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Chapter 1

Introduction

In this thesis, we will take a look at two famous and deep theorems about
stochastic processes, namely the Kolmogorov existence theorem and Tala-
grand’s majorizing measure theorem, and applications of these in different
fields of mathematics, i.e., stochastic processes, Banach space theory and
asymptotic convex geometry.

We start our investigations in Chapter 2 with a rather general version of
Kolmogorov’s existence theorem. In particular, we will consider measurable
spaces, so-called Borel spaces. We will show for a (possibly uncountable)
family of Borel spaces and a projective family of probability measures that
there exists a unique probability measure on the product space of the family
of Borel spaces such that its family of finite-dimensional distributions are the
given projective family of probability measures. (Theorem 2.28)

We provide an application of this theorem to the theory of stochastic
processes, to be more precise, we show the existence of the Brownian motion
(see appendix). Throughout this chapter and the appendix we will heavily
rely on the concept of stochastic kernels, which will allow us to consider this
problem in a very general manner. As a result we will see that there exist
various processes similar to the Brownian motion.

The Kolmogorov existence theorem goes back to Kolmogorov’s ground-
breaking work ”Grundbegriffe der Wahrscheinlichkeitstheorie” from 1932 [Ko].
It is worthwhile noting that sometimes this theorem is referred to as Daniell-
Kolmogorov existence theorem. This is due to the fact that Percy J. Daniell,
in essence, already showed this theorem in a paper written in 1919, which
is part of a 10 papers series in which he developed his theory of Daniell-
integrals. Yet, Kolmogorov’s result is more general, since it allows index sets
of arbitrary cardinality, whereas Daniell’s is only for denumerable ones. In
1921, Daniell wrote some work on Brownian motion calling it ”dynamic prob-

1



CHAPTER 1. INTRODUCTION 2

ability”. His early works were also a starting point to Wiener’s investigation
on Brownian motion.

In Chapter 3 we derive two results of local Banach space geometry. We
show for a real Banach space (X, ‖ · ‖) that ‖ · ‖p, 1 ≤ p ≤ 2, is of negative
type, if X is linear isomorphic to a subspace of Lp(Ω,P). We also show that
if ‖·‖p, 1 ≤ p ≤ 2, is of negative type, then there exists, for each 0 < β < p, a
probability space such that X is linear isomorphic to a subspace of Lβ(Ω,P).
In the case of X being infinite dimensional, the Kolmogorov existence theo-
rem will aid us in proving the second part. This part is based on Applications
de l’étude de certains formes linéaires aléatoires au plongement d’espaces
de Banach dans les espaces Lp by J.Bretagnolle and D.Dacunha-Castelle
[B-D]. We follow the presentation of J.Prochno in Charakteriserungen von
Teilräumen von Lp [P].

We will turn our attention to Talagrand’s and Fernique’s majorizing mea-
sures theorem in Chapter 4. This theorem gives us sharp upper and lower
bounds for the supremum of stochastic processes with subgaussian tails.

By this theorem, the boundedness of a subgaussian process is character-
ized, since, due to H.J. Landau and L.A. Shepp in 1970 [L-S], the bound-
edness of a stochastic process (Xt)t∈T is equivalent to the boundedness of
E supt∈T |Xt|. Furthermore, the boundedness of E supt∈T |Xt| is equivalent to
the boundedness of E supt∈T Xt, which can be easily seen by the inequality

E sup
t∈T

Xt ≤ E sup
t∈T
|Xt| ≤ E|Xt0|+ E2 sup

t∈T
Xt,

for any t0 ∈ T , and has the advantage that E supt∈T (Xt + Y ) = E supt∈T Xt

holds, for any subgaussian random variable Y .
In 1967, R.M. Dudley showed in [D2] that the boundedness of a Gaussian

process with a pseudometric space (T, d) as index set, where d is the canonical
distance induced by the associated process of covariances (we will see what
this exactly means), is implied by the boundedness of the Dudley entropy
bound, i.e., by ∫ ∞

0

√
logNεdε <∞,

where Nε is the ε-entropy of T in the metric d. Yet, this fails to character-
ize the boundedness of the stochastic process, since the ε-entropy does not
account for possible lack of homogeneity in (T, d) [T2].

The possible solution of this was established in 1975 by X. Fernique [F].
He proved that the boundedness of the process follows from the boundedness



CHAPTER 1. INTRODUCTION 3

of

sup
t∈T

∫ ∞
0

log

√
1

µ(B(t, ε))
dε,

where µ is a probability measure on T and B(t, ε) is the ε-ball centered at t in
the metric d, and conjectured that this might characterize the boundedness.

In 1987, Michel Talagrand showed in [T2] that this conjecture is indeed
true and elaborated the topic further in a series of papers, which can be
tracked down in the references of [T1].

We will be solely concerned with his approach to the proof of the ma-
jorizing measures theorem from his work: Majorizing Measure: The Generic
Chaining [T1]. Astonishingly, the proof of this theorem is based upon a
geometric argument, namely, regrouping nearly identical random variables
of the stochastic process, which can be expressed through certain increasing
sequence of partitions of the index set T . This is elaborated by the so-called
”generic chaining”-argument, which goes back to at least Kolmogorov [T1],
and which we will see in detail. Furthermore, we will introduce a construc-
tion scheme for such sequences of partitions.

Mainly based upon the works Almost Orthogonal Submatrices of an Or-
thogonal Matrix [R1] and Contact Points of Convex Bodies [R2] by Mark
Rudelson, we will derive in Chapter 5 an application of the majorizing mea-
sures theorem to asymptotic convex geometry. We will prove the approxima-
tion result that for each n-dimensional convex body B and each ε > 0 there
exists another n-dimensional convex body K such that the Banach-Mazur
distance of B and K is less or equal than 1 + ε and that K and B are having
less then C(ε)n log n contact points. Furthermore, it will be shown that, if
K is embedded in Rn such that Bn

2 is it’s John’s ellipsoid, then K induces
a John’s decomposition of the identity operator in Rn by its contact points
with Bn

2 .
The classical theorem on John’s decomposition, established by Fritz John

in 1948 [J], was the starting point to this theorem. It was later, namely in
1992, refined by Keith Ball [Ba]. Yet, it could only bound the number of
contact points by n(n+ 1)/2, for symmetric convex bodies, and n(n+ 3)/2,
for general ones, respectively.

It is due to a series of papers by Mark Rudelson that this could be low-
ered significantly. In 1995 to 1997, in a first step, he could give the bound
C(ε)n(log n)3 in [R2] and [R3]. Two years later, he was able to improve
the bound to C(ε)n log n(log log n)2 before realizing, that he could actually
bound it by C(ε)n log n, which was given in [R1] and will be our main con-
cern.
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In 2009, N. Srivastava, D. Spielman and J. Batson managed to do even
better. In [S-S-B], they showed that, for symmetric convex bodies, the bound
can be lowered to C(ε)n. Moreover, they proved that there exists a convex
body K for each convex body B such that their Banach-Mazur distance
is smaller than 2.24 and the number of their contact points is bounded by
C(ε)n.



Chapter 2

Kolmogorov Existence
Theorem

In this chapter, we will provide a proof for the Kolmogorov existence theorem
for a certain class of measurable spaces, so-called Borel spaces. First, we need
to introduce definitions and notational devices in order to be able to address
this problem and work out the proof in a clean manner.

Definition 2.1. (Stochastic process)
Let (Ω1,F1,P) be a probability space, (Ω2,F2) be a measure space and T be
an index set. A stochastic process X is a function

X : Ω1 × T → Ω2, (ω, t) 7→ Xt(ω),

such that Xt : Ω1 → Ω2 is F1-F2-measurable for each t ∈ T .

Remark. To emphasize the view of the stochastic process X as family of
random variables we will also write X = (Xt)t∈T .

Definition 2.2. (Product space)
Let (Ωt)t∈T be an arbitrary family of sets. Then, by the product space,
Ω :=

�
t∈T

Ωt, we denote the set of all maps

ω : T →
⋃
t∈T

Ωt

with the property that ω(t) ∈ Ωt, for all t ∈ T .

Notation. If J ⊂ T , then ΩJ :=
�

j∈J Ωj, and if T = N0 and i, j ∈ T , then

Ω{i,...,j} :=
�j

k=i Ωk will be our notation of choice. In the case that there
exists an Ω0 such that Ωt = Ω0 for all t ∈ T , we write Ω =

�
t∈T Ω0 = ΩT

0 ,

ΩJ =
�

j∈J Ω0 = ΩJ
0 and Ω{i,...,j} =

�j
k=i Ω0 = Ω

{i,...,j}
0 , respectively.
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Definition 2.3. (Coordinate functions)
Let t ∈ T , then πt : Ω→ Ωt, ω 7→ ω(t) is the t-th coordinate function.
For J ⊂ J ′ ⊂ T the mapping

πJ
′

J : ΩJ ′ → ΩJ , ω 7→ ω|J

is called a canonical projection.
In the case that J ′ = T we write πJ . Additionally, πJj will be used for the
projection from ΩJ to Ωj.

Definition 2.4. (Product σ-algebra)
Let (Ωt,Ft), t ∈ T , be measurable spaces. The product σ-algebra

F :=
⊗
t∈T

Ft

is the smallest σ-algebra on Ω such that for all t ∈ T the coordinate function
πt is F -Ft-measurable, i.e.,

F = σ(πt, t ∈ T ) := σ(π−1
t (Ft), t ∈ T ).

Notation. As for product spaces the notation will be FJ :=
⊗

j∈J Fj if J ⊂ T ,

and F{i,...,j} :=
⊗j

k=iFk if T = N0. If there exists a F0 such that Ft = F0

for all t ∈ T , we will use F =
⊗

t∈T F0 = F⊗T0 , FJ =
⊗

j∈J F0 = F⊗J0 and

F{i,...,j} =
⊗j

k=iF0 = F⊗{i,...,j}0 , respectively.

Now we introduce the concept of projective families of probability mea-
sures. As we will see this is central to our investigation, since this criterion
tells us how tightly a family of probability measures has to be interlocked in
order to induce the existence of some stochastic process.

Definition 2.5. (Joint distribution)
Let (Ωj,Fj,Pj), j ∈ J = {1, ..., n}, n ∈ N, be probability spaces. The joint
distribution PJ is defined by

∀Aj ∈ Fj, j ∈ J : PJ

(�
j∈J

Aj

)
= P(A1 ∈ F1, ..., An ∈ Fn).

Definition 2.6.
Let T be an arbitrary index set. Then by E(T ) := {J ⊂ T : J finite}, we
denote the set of all finite subsets of T .
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Definition 2.7. (Projective family)
The family (PJ)J∈E(T ) of probability measures on (ΩJ ,FJ) is called a pro-
jective family, if

∀L ⊂ J ; L, J ∈ E(T ) : PJ ◦
(
πJL
)−1

= PL.

PJ is called a finite-dimensional distribution for J ∈ E(T ) and is defined
by

From the next corollary it follows that a stochastic process as defined
above always admits a projective family of probability measures which are
just the finite-dimensional distributions associated with the process. We will
see that the Kolmogorov existence theorem tackles the opposite direction
of this corollary, namely, that a prescribed projective family induces the
existence of a stochastic process on some probability space.

Corollary 2.8.
Let X be a stochastic process from (Ω1,F1,P) × T to (Ω2,F2). Then the
family (PJ)J∈E(T ) of finite-dimensional distributions is projective.

Proof. Let J, L ∈ E(T ), L ⊂ J and define A :=
�

`∈LA`, where A` ∈ F2 for
all ` ∈ L. For the joint distribution of (X`)`∈L it follows that

PL(A) = P(ω1 ∈ Ω1 : (X`(ω1))`∈L ∈ A)

= P(ω1 ∈ Ω1 : (Xj(ω1))j∈J ∈ A× ΩJ\L)

= PJ(A× ΩJ\L) =
(
PJ ◦ (πJL)−1

)
(A).

In order to prove results in probability theory concerning σ-algebras, one
usually resorts to generators of the aforementioned σ-algebras. Here, we
will introduce the cylinder sets. A specially constructed intersection of these
cylinder sets, which, as we will see is, an algebra, will then generate the
product σ-algebra.
In the proof of the Kolmogorov existence theorem we will make use of this,
as this will guarantee that the requirements for Carathéodory’s extension
theorem (Appendix, Theorem A.12) are satisfied.

Definition 2.9. (Cylinder sets)
Let T be an index set and J ⊂ T . For each A ∈ FJ the preimage π−1

J (A) ⊂
Ω :=

�
t∈T Ωt of the canonical projection πJ from Ω to ΩJ , is called a cylin-

der set with basis J . The set of all cylinder sets with Basis J is denoted by
ZJ .
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If A =
⊗

j∈J Aj, for some Aj ∈ Fj, then π−1
J (A) is called a rectangular

cylinder with basis J . We write ZRJ for the set of all rectangular cylinders
with basis J . By Z we denote the set of all cylinder sets with finite basis
and by ZR the set of all rectangular cylinder sets with finite basis, i.e.,

Z :=
⋃

J∈E(T )

ZJ , ZR :=
⋃

J∈E(T )

ZRJ .

Lemma 2.10.
Every ZJ , J ⊂ T , is a σ-algebra and Z is an algebra.

Proof. By definition ZJ , J ⊂ T , is a set consisting of preimages of the ele-
ments of a σ-algebra FJ . Since the preimage operation preserves the prop-
erties of a σ-algebra, ZJ is a σ-algebra since FJ is one.

Now, we show that Z is an algebra:

(1) Since, for each J ⊂ T , ZJ is a σ-algebra, Ω ∈ ZJ for all J ⊂ T . By the
definition of Z it follows that Ω ∈ Z.

(2) Let now B ∈ Z. Then there exists some finite J ∈ E(T ) such that
B ∈ ZJ . Since ZJ is a σ-algebra we have Bc ∈ ZJ and hence that
Bc ∈ Z.

(3) To show that Z is closed under finite unions let B,B′ ∈ Z. Then there
exist J,K ∈ E(T ) such that B ∈ ZJ and B′ ∈ ZK . Define L := J ∪K.
L is clearly finite. Because πK = πLK ◦ πL holds, we get that

ZK = π−1
K (FK) = π−1

L

((
πLK
)−1

(FK)
)
⊆ π−1

L (FL) = ZL,

and analogously that ZJ ⊆ ZL. Hence, ZJ ∪ ZK ⊆ ZL holds and
there exists a finite L ∈ E(T ) such that B ∪B′ ∈ ZL ⊂ Z.

Lemma 2.11.
The cylinder sets Z generate the product σ-algebra F , i.e., σ(Z) = F .

Proof. First, we prove the inclusion F ⊆ σ(Z).

For all t ∈ T it holds that πt = π
{t}
t ◦ π{t} and therefore

Zt = π−1
t (Ft) = π−1

{t}

((
π
{t}
t

)−1

(Ft)
)

= π−1
{t}(F{t}) = Z{t} ⊆ Z ⊆ σ(Z)



CHAPTER 2. KOLMOGOROV EXISTENCE THEOREM 9

holds. Since F = σ(π−1
t (Ft), t ∈ T ) one sees that F ⊆ σ(Z) is true.

To show the second inclusion, σ(Z) ⊆ F , let J ∈ E(T ). Since πJ is F -
FJ -measurable (see Lemma A.1 from the appendix) it holds that ZJ =
π−1
J (FJ) ⊆ F . It follows that

Z =
⋃

J∈E(T )

ZJ ⊆ F ,

and consequently that σ(Z) ⊆ σ(F) = F . Hence, σ(Z) = F .

Lemma 2.12.
The set ZR of all rectangular cylinder sets with finite basis is a generator
of the product σ-algebra F , i.e., σ(ZR) = F , and is closed under finite
intersections.

Proof. Since ZR ⊆ Z, it follows with the second part of Lemma 2.11 that
σ(ZR) ⊆ F .
For the other inclusion we observe that Z{t} = ZR{t} and ZR{t} ⊂ ZR, for all

t ∈ T , and therefore, by the first part of Lemma 2.11, that F ⊆ σ(ZR).
Hence, F = σ(ZR).

Let now A,B ∈ ZR, then there exist J,K ∈ E(T ) and A′j ∈ Fj, j ∈ J ,
and B′k ∈ Fk, k ∈ K, such that for A′J :=

�
j∈J A

′
j and B′K :=

�
k∈K B

′
k, it

holds that π−1
J (A′J) = A and π−1

K (B′K) = B. It follows that

A∩B = π−1
J (A′J)∩ π−1

K (B′K) = π−1
J∪K(A′J ×ΩK\J)∩ π−1

J∪K(B′K ×ΩJ\K)

= π−1
J∪K((A′J ×ΩK\J) ∩ (B′K ×ΩJ\K)) = π−1

J∪K(A′J\K ×B′K\J ×C ′J∩K),

where C ′J∩K :=
�

i∈J∩K
(A′i ∩B′i) with A′i ∩B′i ∈ Fi, for all i ∈ J ∩K.

Therefore, A ∩ B ∈ ZRJ∪K and consequently A ∩ B ∈ ZR, giving us that ZR
is closed under finite intersection.

Lemma 2.13.
The set

Z̃ :=
⋃
J⊂T

J count.

ZJ

is a σ-algebra.

Proof. Since ZJ is a σ-algebra for every subset of T , the first two steps of
the proof are the same as (1) and (2) from Lemma 2.10. It remains to show
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the closure under countable union.
Let Bi ∈ Z̃, i ∈ N. Then there exist countable Ji ∈ T such that BJi ∈ ZJi ,
for all i ∈ N. Define L :=

⋃
i∈N Ji. L is countable since it is the countable

unions of countable sets.
Following (3) from Lemma 2.10 one sees that ZJi ⊆ ZL, for all i ∈ N and
consequently that

⋃
i∈NZJi ⊆ ZL. This means that there exists a countable

L ⊂ T such that ⋃
i∈N

Bi ∈ ZL ⊂
⋃
J⊂T

J count.

ZJ = Z̃.

As a next step, we will establish the concept of transition kernels, which
will describe the transition probability of some state of a process at time
t1 to another state of the process at time t2, and therefore generalizing the
concept of transition matrices for Markovian processes.
In other words, transition kernels will give an answer to the question of
how to describe a diffusion process which transitions the unit mass in some
point ω ∈ Ω into a mass distribution on Ω′, prescribed by some measure
A 7→ P(ω,A), where A ∈ F .

Definition 2.14. (Transition kernel/ Stochastic kernel)
Let (Ω1,F1) and (Ω2,F2) be measure spaces. The map κ : Ω1×F2 → [0,∞]
is called a (σ-)finite transition kernel from Ω1 to Ω2 if

(i) ω1 7→ κ(ω1, A2) is F1-measurable for all A2 ∈ F2, and

(ii) A2 7→ κ(ω1, A2) is a (σ-)finite measure on (Ω2,F2) for all ω1 ∈ Ω1.

If for all ω1 ∈ Ω1 the measure in (ii) is a probability measure, then κ is called
a stochastic kernel.

Notation. We write κ(dω2) := κ(ω1, dω2) if a kernel κ is independent of ω1.

Corollary 2.15.
It suffices to claim the F1-measurability of ω1 7→ κ(ω1, A2) only for E in (i) of
the definition of transition kernels, where E is a generator of F2 that is closed
under finite intersections and such that there exists a sequence (En)n∈N with
En ∈ E and En ↑ Ω.

Proof. Showing that D := {A2 ∈ F2 : ω1 7→ κ(ω1, A2) is F1-measurable} is a
Dynkin system is the only thing that has to be done here (for the definition
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of a Dynkin system see appendix, Definition A.2). From Dynkin’s theorem
(Appendix, Theorem A.3) it follows that δ(E) = σ(E) = F2.
Additionally, by E ⊂ D ⊆ F2, and therefore δ(E) ⊆ D ⊆ F2, it follows that
D = F2 = σ(E). The way E was chosen guarantees with Lemma A.4 from
the appendix, that the kernel κ is uniquely determined.

Therefore, we need to show that D is a Dynkin system.

(i) Let A′, A ∈ D with A ⊂ A′. For fixed ω1 ∈ Ω1, by (ii) of the definition,
κ(ω1, A

′ \A) is the measure of the set A′ \A w.r.t. the σ-finite measure
corresponding to ω1 ∈ Ω1. It follows that

∀ω1 ∈ Ω1 : κ(ω1, A
′ \ A) = κ(ω1, A

′)− κ(ω1, A),

and therefore that κ( · , A′\A) = κ( · , A′)−κ( · , A) is F1-measurable,
because κ( · , A′), κ( · , A) are F1-measurable. Hence, A′ \ A ∈ D.

(ii) Let An ∈ D, n ∈ N, pairwise disjoint and let A :=
⋃
n∈NAn. For fixed

ω1 ∈ Ω1, it follows by the same argument as above and σ-additivity
that

∀ω1 ∈ Ω1 : κ(ω1, A) = κ(ω1,
⋃
n∈N

An) =
∑
n∈N

κ(ω1, An),

and that κ( · , A) =
∑

n∈N κ( · , An) is F1-measurable, because it is the
countable sum of F1-measurable functions. Hence, A =

⋃
n∈NAn ∈ D.

(iii) Using the fact that E ⊂ D and that there exists a sequence (En)n∈N in E
with En ↑ Ω2, we can define disjoint sets A1 := E1 and An := En \En−1

for n ≥ 2. Clearly,
⋃
n∈NAn = Ω2.

By (i), κ( · , A1) = κ( · , E1) and κ( · , An) = κ( · , En)−κ( · , En−1)
are F1-measurable for n ∈ N. By (ii) it follows that

κ( · ,Ω2) = κ( · ,
⋃
n∈N

An) =
∑
n∈N

κ( · , An)

is F1-measurable and therefore Ω2 ∈ D.

Lemma 2.16. (Product of kernels)
Let (Ωi,Fi), i = 0, 1, 2, be measurable spaces and κ1, κ2 be finite kernels from
(Ω0,F0) to (Ω1,F1) and from (Ω0×Ω1,F0⊗F1) to (Ω2,F2), respectively. If
we denote by

(κ1 ⊗ κ2)(ω0, A) :=

∫
Ω1

∫
Ω2

1A(ω1, ω2)κ2((ω0, ω1), dω2)κ1(ω0, dω1),
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with ω0 ∈ Ω0 and A ∈ F1 ⊗ F2, the product of the kernels of κ1 and κ2,
then κ1 ⊗ κ2 forms a σ-finite kernel (not necessarily finite) from (Ω0,F0) to
(Ω1 × Ω2,F1 ⊗F2), which is stochastic if κ1 and κ2 are stochastic.

To prove this lemma, we require another result.

Lemma 2.17. Let κ be a finite transition kernel from (Ω1,F1) to (Ω2,F2)
and let f : Ω1 × Ω2 → [0,∞] be F1 ⊗F2-B([0,∞])-measurable. Then

If : Ω1 → [0,∞], ω1 7→
∫
Ω2

f(ω1, ω2)κ(ω1, dω2)

is well-defined and F1-measurable.

Proof. First, we show that If (ω1) is well-defined.
Define iω1 : Ω2 → Ω1 × Ω2 by iω1(ω2) = (ω1, ω2) with some fixed ω1 ∈ Ω1.
Since π2◦iω1 = idΩ2 and π1◦iω1 = ω11Ω1 holds, it follows that iω1 is F2-F2- and
F2-F1-measurable. We get that iω1 is F2-F1 ⊗ F2-measurable (Lemma A.1
from the appendix).
Together with the F1 ⊗F2-B([0,∞])-measurability of f it holds that f ◦ iω1

is F2-B([0,∞])-measurable for every ω1 ∈ Ω1 and consequently that If is
well-defined.

To show that If is F1-measurable define g := 1A1×A2 . Then it holds that

Ig(ω1) =

∫
Ω2

1A1×A2(ω1, ω2)κ(ω1, dω2) = 1A1(ω1)κ(ω1, A2)

is F1-measurable, because 1A1(ω1) and κ(ω1, A2), for every A2 ∈ F2, are F1-
measurable.
Define D := {A ∈ F1 ⊗F2 : I1A is F1-measurable}. D is a Dynkin system:

(i) Obviously Ω1 × Ω2 ∈ D.

(ii) Let A,B ∈ D with A ⊂ B, then we have that I1B\A = I1B − I1A holds
because κ is finite and 1B\A = 1B − 1A holds. Thereby B \ A ∈ D.

(iii) Let An ∈ D, n ∈ N, pairwise disjoint and A :=
⋃
n∈NAn. By the fact

that 1A = 1⋃
n∈N An

=
∑

n∈N 1An , it follows that I1A =
∑

n∈N I1An and
therefore that A ∈ D.
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By the definition of D one sees that the set of rectangular cylinders ZR is
contained in D. From Lemma 2.12 we know that ZR is a generator of the
product σ-algebra F1⊗F2 and closed under finite intersections. By Dynkin’s
theorem (see Appendix, Theorem A.3) it follows that D = F1 ⊗F2.
Hence, 1A is F1-measurable for each A ∈ F1 ⊗ F2. It follows for every step
function g that Ig is F1-measurable. Let now (fn)n∈N be a monotonously
growing sequence of step functions. By the monotone convergence theorem
(see Appendix, Theorem A.5), we get that If (ω1) = limn→∞ Ifn(ω1), for
every ω1 ∈ Ω1, and that If is measurable, since it is the limit of measurable
functions.

Having shown this lemma, we can now go over to show the result about
products of kernels.

Proof. (Product of kernels)
Let A ∈ F1 ⊗F2. By Lemma 2.17, it follows that the map

gA : (ω0, ω1) 7→
∫
Ω2

1A(ω1, ω2)κ2((ω0, ω1), dω2)

is well-defined and measurable w.r.t F1 ⊗ F2. Again, by Lemma 2.17, the
map

ω0 7→ (κ1 ⊗ κ2)(ω0, A) =

∫
Ω1

gA(ω0, ω1)κ1(ω0, dω1)

is well-defined and F0-measurable.

Let now An ∈ F1 ⊗ F2, n ∈ N, be pairwise disjoint and A :=
⋃
n∈NAn.

For fixed ω0, we have that

(κ1 ⊗ κ2)(ω0, A) =

∫
Ω1

∫
Ω2

1A(ω1, ω2)κ1(ω0, dω1)κ2((ω0, ω1), dω2)

=

∫
Ω1

∫
Ω2

1 ⋃
n∈N

An(ω1, ω2)κ1(ω0, dω1)κ2((ω0, ω1), dω2)

=

∫
Ω1

∫
Ω2

∑
n∈N

1An(ω1, ω2)κ1(ω0, dω1)κ2((ω0, ω1), dω2),

and by the monotone convergence theorem (Appendix, Theorem A.5) that

=
∑
n∈N

∫
Ω1

∫
Ω2

1An(ω1, ω2)κ1(ω0, dω1)κ2((ω0, ω1), dω2) =
∑
n∈N

(κ1 ⊗ κ2)(ω0, An).
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Therefore, A 7→ (κ1 ⊗ κ2)(ω0, A) is σ-additive and, hence, a measure.

For ω0 ∈ Ω0 and n ∈ N define Aω0,n := {ω1 ∈ Ω1 : κ2((ω0, ω1),Ω2) < n}.
Since κ2 is finite, it holds that

⋃
n∈NAω0,n = Ω1, for every ω0 ∈ Ω0. Further-

more, it holds that

(κ1 ⊗ κ2)(ω0, Aω0,n × Ω2) =

∫
Ω1

∫
Ω2

1Aω0,n(ω1)1Ω2(ω2)κ1(ω0, dω1)κ2((ω0, ω1), dω2)

= κ1(ω0, Aω0,n)κ2((ω0, ω1),Ω2)

< κ1(ω0, Aω0,n) · n < ∞,

where the last inequality follows from the finiteness of κ1.
Therefore, (κ1 ⊗ κ2)(ω0, · ) is σ-finite and κ1 ⊗ κ2 a transition kernel.

Let ω0 ∈ Ω0 still be fixed. Then, κ2((ω0, · ),Ω2) is not necessarily bounded,
even if κ2 is a finite kernel. Together with

(κ1 ⊗ κ2)(ω0,Ω1 × Ω2) = κ1(ω0,Ω1)

∫
Ω2

1Ω2(ω2)κ2((ω0, ω1), dω2),

one sees that (κ1⊗ κ2)(ω0, · ) is not necessarily finite and consequently the
kernel κ1 ⊗ κ2 is not necessarily finite.

If κ1 and κ2 are stochastic kernels, κ1(ω0,Ω1) = 1 and κ2((ω0, ω1),Ω2) = 1
holds. For fixed ω0 it follows that

(κ1 ⊗ κ2)(ω0,Ω1 × Ω2) = κ1(ω0,Ω1) · κ2((ω0, ω1),Ω2) = 1

and hence that κ1 ⊗ κ2 is a stochastic kernel.

Remark. For sets of the form A = A1 × A2, A1 ∈ F1, A2 ∈ F2, the product
simplifies to

(κ1 ⊗ κ2)(ω0, A1 × A2) :=

∫
A1

κ2((ω0, ω1), A2)κ1(ω0, dω1).

If the kernel κ1 is independent of ω0, it is a probability measure on (Ω1,F1)
and the product κ1 ⊗ κ2 is a probability measure on (Ω1 × Ω2,F1 ⊗F2):

(κ1 ⊗ κ2)(A) :=

∫
Ω1

∫
Ω2

1A(ω1, ω2)κ2((ω0, ω1), dω2)κ1(dω1),

where A ∈ F1⊗F2. If, additionally, κ2 is independent of ω1, κ1⊗κ2 simplifies
to the ordinary product measure of κ1 and κ2.
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Remark. The definition of the product of two kernels can be extended induc-
tively to more than two factors in the following way:

n⊗
j=1

κj =

(
n−1⊗
j=1

κj

)
⊗ κn,

where κj, for j ≥ 2, is a kernel from (Ω{1,...,j−1},F{1,...,j−1}) to (Ωj,Fj). Since
this product is associative, it follows, for all k = 1, ..., n− 1, that

n⊗
j=1

κj =

(
k⊗
j=1

κj

)
⊗

(
n⊗

j=k+1

κj

)
.

In the proof of the Kolmogorov existence theorem, we will need that a
random variable Y , together with a sub-σ-algebra F , induces the existence of
corresponding stochastic kernels. These kernels will be called regular versions
of the conditional distribution, or in short: regular conditional distributions.

First, consider a random variable X with values in a measure space
(Ω2,F2). For A ∈ F1 we can express the conditional probability under X
as E(A|X) (see appendix, Definition A.9). Now let Z be a σ(X)-measurable
random variable. By the factorization lemma (Appendix, Theorem A.8) it
follows that there exists a F2 − B(R)-measurable map ϕ : Ω2 → R with
ϕ(X) = Z. If X is onto, then ϕ is uniquely determined and we write
Z ◦X−1 = ϕ (even if X−1 does not exist).
Thereby, we can explain the conditional expectation E(A|X = x) of A under
X = x, for each A ∈ F1, as in the next definition and furthermore such that
E(A|X) = E(A|X = x) holds on {X = x}.

Definition 2.18. (Conditional expectation)
Let Y ∈ L1(Ω1,F1,P) and let X : (Ω1,F1) → (Ω2,F2). The conditional
expectation of Y given X = x, in short E(Y |X = x), is defined as the
function ϕ from the factorization theorem (Appendix, Theorem A.8) with
Z = E(Y |X) as explained above.
Additionally, we define the conditional probability of A ∈ F1 given X = x
as P(A|X = x) = E(1A|X = x).

Definition 2.19. (Regular conditional distribution)
Let Y be a random variable from (Ω1,F1,P) to (Ω2,F2) and F ⊂ F1 a
sub-σ-algebra. A stochastic kernel κY,F from (Ω1,F) to (Ω2,F2) is called a
regular version of the conditional distribution of Y given F , if it holds
that κY,F(ω1, B) = P({Y ∈ B}|F)(ω1) for P-almost all ω1 ∈ Ω1 and for every
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B ∈ F2.
Let now F = σ(X), where X is a another random variable. Then the kernel
(ω1, B) 7→ κY,X(ω1, B) = P({Y ∈ B}|X = x) = κY,σ(X)(X

−1(ω1), B) is called
a regular version of the conditional distribution of Y given X.

Theorem 2.20. (Regular conditional distribution)
Let Y be a random variable from (Ω1,F1,P) to (R,B(R)) and F ⊂ F1 a
sub-σ-algebra. Then there exists a regular version κY,F of the conditional
distribution P({Y ∈ · }|F).

Proof. We are going to construct a measurable version of the distribution
function of the conditional distribution of Y by defining its values on Q (up
to a Null set) and then extending this to R.

Let F (r, ·) be a version of the conditional probability P(Y ∈ (−∞, r]|F) for
r ∈ Q. For r ≤ s it holds that 1{Y ∈(−∞,r]} ≤ 1{Y ∈(−∞,s]}, and therefore, by
the monotonicity of the conditional expectation (Appendix, Theorem A.10),
that there exists a Null set Ar,s ∈ F and that following holds

∀ω1 ∈ Ω \ Ar,s : F (r, ω1) ≤ F (s, ω1).

From the dominated convergence theorem for conditional expectations (Ap-
pendix, Theorem A.10) it follows that there exist Null sets Br ∈ F , r ∈ Q,
and C ∈ F such that for all ω1 ∈ Ω \Br it holds that

lim
n→∞

F

(
r +

1

n
, ω1

)
= lim

n→∞
P
(
Y ∈

(
−∞, r +

1

n

]
|F
)

= lim
n→∞

P
(
Y − 1

n
∈ (−∞, r] |F

)
= P (Y ∈ (−∞, r] |F)

= F (r, ω1),

since Y ∈ L(Ω,F ,P) and Y − 1
n
→ Y , and consequently that

∀ω1 ∈ Ω \Br : lim
n→∞

F

(
r +

1

n
, ω1

)
= F (r, ω1).

Furthermore, we have that

∀ω1 ∈ Ω \ C : lim
n→∞

F (−n, ω1) = 0 and lim
n→∞

F (n, ω1) = 1.

Set now N :=
⋃
r,s∈QAr,s ∪

⋃
r∈QBr ∪ C and for all ω1 ∈ Ω1 \ C define

F̃ (z, ω1) := inf{F (r, ω1) : r ∈ Q, r ≥ z}.
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Since F (·, ω1) is monotonously growing and right-continuous, F̃ (·, ω1) is also
monotonously growing on R \ Q and right-continuous on Q. Consequently,
F̃ (·, ω1) is a distribution function for every ω1 ∈ Ω1 \N .
For the remaining ω1 ∈ N set F̃ (·, ω1) := F0, where F0 is an arbitrary but
fixed distribution function.

We proceed by defining κ(ω1, ·), for every ω1 ∈ Ω1, as the measure corre-
sponding to the distribution function F̃ (·, ω1) on (Ω1,F).
For r ∈ Q and B := (−∞, r]

ω1 7→ κ(ω1, B) = P(Y ∈ B|F)1Nc(ω1) + F0(r)1N(ω1) (2.1)

is clearly F -measurable.
Since {(−∞, r] : r ∈ Q} is a generator of B(R), which is closed under finite
intersections and contains the sequence (−∞, r] ↑ R, we get by Corollary 2.15
that the F -measurability holds for all of B(R). Hence, κ is a stochastic kernel.

It remains to show that κ is a version of the conditional distribution. For
A ∈ F , r ∈ Q and B = (−∞, r] it follows from equation (2.1) that∫

A

κ(ω1, B)P(dω1) =

∫
A

P(Y ∈ B|F)dP = P(A ∩ {Y ∈ B}).

As a function of B, both sides are finite measures on B(R), which coincide on
the generator {(−∞, r] : r ∈ Q}. By the uniqueness theorem for measures
(Appendix, Theorem A.11) it follows that for every B ∈ B(R) the equality
holds and therefore that P-a.s. κ( · , B) = P(Y ∈ B|F). Hence, κ = κY,F .

Lemma 2.21.
Let (Ωi,Fi), i ∈ N0, be measurable spaces and let P0 be a probability
measure on (Ω0,F0). Furthermore, let κi, i ∈ N, be stochastic kernels
from (Ω{0,...,i−1},F{0,...,i−1}) to (Ωi,Fi). Define probability measures Pi on

(Ω{0,...,i},F{0,...,i}) recursively by Pi = P0 ⊗
⊗i

`=1 κ`. Then, for all i, j ≥ k
and A ∈ F{0,...,k}, the following holds:

Pi(A× Ω{k+1,...,i}) = Pj(A× Ω{k+1,...,j})).

Proof. Since P0 is a probability measure on (Ω0,F0), we know from the re-
mark about stochastic kernels that Pk is likewise a probability measure on
(Ω{0,...,k},F{0,...,k}), for all k ∈ N. Let k, n ∈ N0, k ≤ n, then A×Ω{i+1,...,n} ∈
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F{0,...,n}, for all A ∈ F{0,...,i}. Additionally, the following holds for all n ≥ k

Pn(A× Ω{k+1,...,n}) =

∫
A×Ω{k+1,...,n}

Pn(d(ω0, ..., ωn))

=

∫
A×Ω{k+1,...,n}

κn+1(ωn,Ωn+1)Pn(d(ω0, ..., ωn))

= (Pn ⊗ κn+1)(A× Ω{k+1,...,n+1})

= Pn+1(A× Ω{k+1,...,n+1}),

where we have used that κn+1(ωn,Ωn+1) = 1 for every n ∈ N.
By induction we get the above lemma.

With the tools we have gathered so far, we are now able to show Ionescu-
Tulcea’s theorem, which will be used to prove the Kolmogorov existence
theorem.

Theorem 2.22. (Ionescu-Tulcea)
Let the assumptions from Lemma 2.21 hold. Then, there exists a unique
probability measure P on (Ω,F) such that

P(A× Ω{k+1,...,∞}) = Pk(A),

for all k ∈ N0 and A ∈ F{0,...,k}.

Proof. From Lemma 2.11 we know that the set of cylinder sets Z generates
the product σ-algebra. Additionally we know by Lemma 2.10 that Z is
an algebra and therefore closed under finite intersections. By the uniqueness
theorem for measures (see Appendix, Theorem A.11) it follows that it suffices
to show the unique existence of a probability measure for Z.
We will show the existence: Define a function P on Z by

∀k ∈ N0 ∀A ∈ F{0,...,k} : P(A× Ω{k+1,...,∞}) := Pk(A).

First, we show that P is additive on Z.
Let k, ` ∈ N0, k ≤ l, and let A ∈ F{0,...,k}, B ∈ F{0,...,`} such that A ∩ B = ∅.
By Lemma 2.21, we see that Pk(A) = P`(A× Ω{k+1,...,`}) and, therefore,

P((A× Ω{k+1,...,∞}) ∪ (B × Ω{`+1,...,∞}))

= P`((A× Ω{k+1,...,`}) ∪B)

= P`((A× Ω{k+1,...,`})) + P`(B)

= Pk(A) + P`(B)

= P(A× Ω{k+1,...,∞}) + P(B × Ω{l+1,...,∞}),
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where we have used that (A×Ω{k+1,...,`})∩B = ∅ ⇐⇒ A∩B = ∅ and that
P` is σ-additive.

Since P is an additive function on the algebra Z, it is a content. If, ad-
ditionally, it holds that P is σ-additive on Z, then P is a pre-measure. By
applying the Carathéodory extension theorem (Appendix, Theorem A.12), P
can be uniquely extended to a measure on F{0,...,k}.
Therefore it is necessary to show the σ-additivity of P. Since σ-additivity
and ∅-continuity are equivalent for algebras, we can show ∅-continuity of P
in order to proof this theorem. (For the definition of ∅-continuity and the
lemma with the mentioned equivalence, see Appendix, Definition A.13 and
Lemma A.14).
Let A0 ⊃ A1 ⊃ ... be a sequence in Z and define α := infn∈N0 P(An) > 0. We
need to show that

∞⋂
n=0

An 6= ∅.

W.l.o.g. we can assume An = A′n × Ω{n+1,...,∞} for some A′n ∈ F{0,...,n}. For
n ≥ m we set

hm,n(ω0, ..., ωm) := (
n⊗

k=m+1

κk)((ω0, ..., ωm), A′n)

and hm := infn≥m hm,n. We show inductively that there exists a ρi ∈ Ωi,
i ∈ N0, with

hm(ρ0, ..., ρm) ≥ α. (2.2)

Because A′n+1 ⊂ A′n × Ωn+1, it holds that

hm,n+1(ω0, ..., ωm) = (
n+1⊗

k=m+1

κk)((ω0, ..., ωm), A′n+1)

≤ (
n+1⊗

k=m+1

κk)((ω0, ..., ωm), A′n × Ωn+1)

= (
n⊗

k=m+1

κk)((ω0, ..., ωm), A′n)

= hm,n(ω0, ..., ωm)

Therefore, we have hm,n ↓ hm for n → ∞. The monotone convergence
theorem (Appendix, Theorem A.5) then implies∫

hmdPm = inf
n≥m

∫
hm,ndPm = inf

n≥m
Pn(A′n) = inf

n≥m
P(An)

m=0
= α.



CHAPTER 2. KOLMOGOROV EXISTENCE THEOREM 20

By this, equation (2.2) is shown for m = 0. Assume now that (2.2) is true
for m ∈ N, then, we get that∫

hm+1(ρ0, ..., ρm, ωm+1)κm+1((ρ0, ..., ρm), dωm+1)

= inf
n≥m+1

∫
hm+1,n(ρ0, ..., ρm, ωm+1)κm+1((ρ0, ..., ρm), dωm+1)

= inf
n≥m+1

∫
(

n⊗
k=m+2

κk)((ρ0, ..., ρm, ωm+1), A′n)κm+1((ρ0, ..., ρm), dωm+1),

and, by the first remark about stochastic kernels, that

inf
n≥m+1

(κm+1 ⊗
n⊗

k=m+2

κk)((ρ0, ..., ρm), A′n)

= inf
n≥m+1

(
n⊗

k=m+1

κk)((ρ0, ..., ρm), A′n)

= inf
n≥m+1

hm,n(ρ0, ..., ρm) = hm(ρ0, ..., ρm)

≥ α.

By induction we get that equation (2.2) holds for all m ∈ N0.
Let ρ := (ρ0, ρ1, ...) ∈ Ω. Our construction tells us

α ≤ hm,m(ρ0, ..., ρm) = 1A′m(ρ0, ..., ρm),

hence, ρ ∈ Am for all m ∈ N. Thereby, it follows that

∞⋂
i=0

Ai 6= ∅.

As mentioned in the beginning of this chapter, we want to show the
Kolmogorov existence theorem for Borel spaces. The relevant definitions
and lemmas about these Borel spaces are given here.

Definition 2.23. (Isomorphism)
Two measurable spaces (Ω1,F1) and (Ω2,F2) are isomorphic, if there exists
a bijective mapping ϕ : Ω1 → Ω2, such that ϕ is F1-F2-measurable and ϕ−1

is F2-F1-measurable. ϕ is called an isomorphism between measurable spaces.
If, additionally, µ1 and µ2 are measures on (Ω1,F1) and (Ω2,F2), such that
µ2 = µ1 ◦ ϕ−1, then ϕ is a measure space isomorphism and (Ω1,F1, µ1) and
(Ω2,F2, µ2) are called isomorphic.
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Definition 2.24. (Borel space)
A measurable space (Ω,F) is a Borel space, if there is a Borel set B ∈ B(R),
such that (Ω,F) and (B,B(B)) are isomorphic.
Analogously, a measurable probability space (Ω,F) is a Borel space if (Ω,F)
and (B,B(B)) are isomorphic, for some B ∈ B[0,1].

Corollary 2.25.
The product space (Ω1×Ω2,F1⊗F2) of two Borel spaces (Ω1,F1) and (Ω2,F2)
is a Borel space.

Proof. Let (Ω1,F1), (Ω2,F2) be Borel spaces. Then, there exist B1, B2 ∈
B(R) and bijective ϕ1 : Ω1 → B1, ϕ2 : Ω2 → B2 such that ϕ1 is F1-B(B1)-,
ϕ−1

1 is B(B1)-F1-, ϕ2 is F2-B(B2)- and ϕ−1
2 is B(B2)-F2-measurable.

Define ϕ := (ϕ1, ϕ2). One immediately sees that ϕ(ω1, ·) = (ϕ1(ω1), ϕ2(·))
is F1 ⊗ F2-B(B2)-measurable and that ϕ(·, ω2) = (ϕ1(·), ϕ2(ω1)) is F1 ⊗
F2-B(B1)-measurable. Therefore ϕ is F1 ⊗ F2-B(B1 × B2)-measurable (see
Appendix, Lemma A.1).
Analogously, one gets that ϕ−1 is B(B1 ×B2)-F1 ⊗F2-measurable.
Hence, (Ω1×Ω2,F1⊗F2) is isomorphic to (B1×B2,B(B1×B2)) and, thereby,
a Borel space.

Theorem 2.26. (Regular conditional distribution)
Let Y be a random variable from (Ω1,F1,P) to the Borel space (Ω2,F2) and
F ⊂ F1 a sub-σ-algebra. Then there exists a regular version κY,F of the
conditional distribution P({Y ∈ · }|F).

Proof. Let B ∈ B(R) be the Borel set and ϕ : Ω2 → B be the measure space
isomorphism corresponding to the Borel space (Ω2,F2). With Theorem 2.20
we get the regular conditional distribution κY ′,F of the real-valued random
variable Y ′ = ϕ ◦ Y . Setting κY,F(ω1, A) = κY ′,F(ω1, ϕ(A)), for all A ∈ F2,
closes the proof.

Now we are able, with the help of Ionescu-Tulcea’s theorem, to prove the
Kolmogorov existence theorem in the case that the index set T is countable.

Theorem 2.27.
Let T be a countable index set and let (Ωt,Ft), t ∈ T , be Borel spaces. Let
(PJ)J∈E(T ) be a projective family of probability measures. Then, there exists
a unique probability measure P on (Ω,F) with the property

PJ = P ◦ (πJ)−1,

for each finite J ⊂ T .
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Proof. W.l.o.g let T = N0 and Pn := P{0,...,n}. From Corollary 2.25 we know
that the finite product of Borel spaces is a Borel space, i.e. (Ω{0,...,n},F{0,...,n})
is a Borel space for all n ∈ N0.
Let F̃n := {A × Ωn+1|A ∈ F{0,...,n}} and let the probability measure P̃n on

(Ω{0,...,n+1}, F̃n) be defined by

∀A ∈ F{0,...,n} : P̃n(A× Ωn+1) := Pn(A)

The projectivity gives us that Pn+1|F̃n = P̃n. Since F̃n ⊂ Fn is a sub-σ-
algebra it follows, by Theorem 2.26, the theorem on the existence of regular
conditional distributions, that a stochastic kernel κ′n+1 from (Ω{0,...,n+1}, F̃n)
to (Ωn+1,Fn+1) exists such that

Pn+1(A)

=

∫ ∫
1A(ω0, ..., ωn, ω̃n+1)κ′n+1((ω0, ..., ωn+1), dω̃n+1)P̃n(d(ω0, ..., ωn+1)),

for every A ∈ F{0,...,n+1}. Since κ′n+1( · , A) is measurable w.r.t F̃n, κ′n+1

does not depend on ωn+1. Hence, by

κn+1((ω0, ..., ωn), · ) := κ′n+1((ω0, ..., ωn+1), · )

a stochastic kernel from (Ω{0,...,n},F{0,...,n}) to (Ωn+1,Fn+1) is defined with

Pn+1(A) =

∫ ∫
1A(ω0, ..., ωn+1)κn+1((ω0, ..., ωn), dωn+1)Pn(d(ω0, ..., ωn)).

Consequently, Pn+1 = Pn ⊗ κn+1 holds and Ionescu-Tulcea’s theorem can be
applied to finish the proof.

Finally, we can show the Kolmogorov existence theorem for arbitrary
index sets. The proof will resort to the result we have just shown.

Theorem 2.28. (Kolmogorov existence theorem)
Let T be an arbitrary index set and let (Ωt,Ft), t ∈ T , be Borel spaces. Let
(PJ)J∈E(T ) be a projective family of probability measures. Then, there exists
a unique probability measure P on (Ω,F), called projective limit, with the
property

P ◦ (πJ)−1 = PJ .

Proof. By the previous theorem we got that for countable J ⊂ T there exists
a unique measure PJ on (ΩJ ,FJ) with the property PK = PJ ◦ (πJK)−1 for
each K ∈ E(T ). A measure on (Ω, σ(πJ)) can be defined by

P̃J((πJ)−1(AJ)) := PJ(AJ),
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where AJ ∈ FJ .
Let J, J ′ ⊂ T be at most countable subsets and let A ∈ σ(πJ) ∩ σ(πJ ′) ∩ Z
be a σ(πJ)∩σ(πJ ′)-measurable cylinder with finite Basis. Then, there exists
a finite K ⊂ J ∩ J ′ and AK ∈ FK with A = (πK)−1(AK).

Hence, P̃J(A) = PK(AK) = P̃J ′(A) for all A ∈ σ(πJ) ∩ σ(πJ ′). From

Lemma 2.13 we know that Z̃, the set of all cylinder sets with countable
basis, is a σ-algebra and furthermore that it holds that

F =
⊗
t∈T

Ft =
⋃
J⊂T

J count.

ZJ = Z̃,

which follows from the fact that Z ⊆ Z̃ ⊆ F and σ(Z) = F . Hence, there
exists a countable J ⊂ T with A ∈ σ(πJ) for every A ∈ F , and we can,
uniquely and independently of the choice of J , define a function P on F by

P(A) = P̃J(A).

All that remains to show is that P is a probability measure. Obviously,
P(Ω) = 1 holds. Let A1, A2, ... ∈ F pairwise disjoint sets with the property
that A :=

⋃∞
n=1An, then there exist countable Jn ⊂ T with An ∈ σ(πJn)

for n ∈ N. Set J =
⋃
n∈N Jn. Then, every An ∈ σ(πJ) and, thereby, also

A ∈ σ(πJ), i.e.,

P(A) = P̃J(A) = P̃J(
∞⋃
n=1

An) =
∞∑
n=1

P̃J(An) =
∞∑
n=1

P(An)

Therefore, P is a probability measure satisfying the theorem.

Definition 2.29.
A topological space (Ω, τ) is polish, if it is countably generated and com-
pletely metrizable by a metric, i.e. if there exists a τ inducing metric d such
that (Ω, d) is a complete, separable, metric space.

Definition 2.30.
A measurable space (Ω,F) is polish, if F is the Borel-σ-algebra w.r.t. a
topology τ that makes (Ω, τ) a Polish space.

Theorem 2.31.
Every Polish space (Ω,F) is a Borel space.

Proof. Since the proof of this theorem does not lie within the scope of this
work, we refer to [D1], Page 487 ff.
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Definition 2.32. (Consistency)
Let (Γ,≤) be a partially ordered set and (Ωγ,Fγ,Pγ), γ ∈ Γ, be a family of
probability spaces. For each pair γ1, γ2 ∈ Γ, γ1 ≤ γ2, let φγ2γ1 : Ωγ2 → Ωγ1 be
a Fγ2-Fγ1-measurable mapping, such that

∀γ1, γ2, γ3 ∈ Γ, γ1 ≤ γ2 ≤ γ3 : φγ2γ1 ◦ φ
γ3
γ2

= φγ3γ1 .

The family of probability measures (Pγ)γ∈Γ is consistent, if

∀φγ2γ1 ∈ Γ, γ1 ≤ γ2 : Pγ2 ◦ (φγ2γ1)
−1 = Pγ1 .

Definition 2.33.
Let the assumptions from Definition 2.32 hold and define the set ΩΓ as fol-
lows:

ΩΓ := {ω ∈ Ω | ∀γ1 ≤ γ2 : ω(γ1) = φγ2γ1(ω(γ2))}.

For each γ ∈ Γ let πγ : ΩΓ → Ωγ be the γ-th coordinate function of ΩΓ, i.e.,
πγ(ω) := ω(γ), and analogously to the product-σ-algebra of Ω, define BΓ as
the smallest σ-algebra on ΩΓ such that πγ is BΓ-Bγ-measurable for all γ ∈ Γ:

BΓ := σ(π−1
γ (Bγ), γ ∈ Γ).

Then, (ΩΓ,BΓ) is the projective limit of the spaces (Ωγ,Bγ), γ ∈ Γ.

Corollary 2.34. Let (Γ,≤) be a partially ordered set und let (Ωγ,Bγ,Pγ),
γ ∈ Γ a family of probability spaces, where Ωγ is a Polish space and Bγ
the corresponding σ-algebra. Let the probability measures Pγ be consistent.
Then, there exists a unique probability measure PΓ on (ΩΓ,BΓ), such that

∀γ ∈ Γ : PΓ ◦ π−1
γ = Pγ.



Chapter 3

Characterization of Subspaces
of Lp

Now we turn to an application of the Kolmogorov existence theorem in Ba-
nach space theory. We will prove the astonishing result that every real Ba-
nach space (X, ‖ · ‖) is linear isometric to a subspace of Lp(Ω,F ,P), where
(Ω,F ,P) is some probability space, as long as ‖ · ‖p, 1 ≤ p ≤ 2, is of negative
type. Concretely, the theorem reads like this:

Theorem 3.1.
Let (X, ‖ · ‖) be a real Banach space and 1 ≤ p ≤ 2.

(i) If ‖ · ‖p is a function of negative type on X, then it holds that for every
β, with 0 < β < p, there exists a probability space (Ω,F ,P), such that
X is linear isometric to a subspace of Lp(Ω,F ,P).

(ii) If (X, ‖ · ‖) is linear isometric to a subspace of Lp(Ω,F ,P), then ‖ · ‖p
is a function of negative type on X.

We start our investigation with clearing up the basic properties of func-
tions of negative type and with lemmas that we will need in order to prove
Theorem 3.1.

Definition 3.2. (Function of Negative Type)
Let T 6= ∅ be a set. The map φ : T × T → R is of negative type, if

(i) ∀t ∈ T : φ(t, t) = 0,

(ii) ∀s, t ∈ T : φ(s, t) = φ(t, s),

(iii) ∀n ∈ N ∀t1, ..., tn ∈ T ∀a1, ..., an ∈ R,
n∑
i=1

ai = 0:
n∑

i,j=1

φ(ti, tj)aiaj ≤ 0.

25
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Lemma 3.3.
Let T 6= ∅ be a set and φ : T × T → R be a non-negative function. Then,
the following two statements are equivalent:

(i) φ is of negative type,

(ii) For each λ > 0 the function e−λφ is positive semidefinite and for all
t ∈ T it holds that φ(t, t) = 0.

Lemma 3.4.
Let φ : T × T → R be a non-negative function of negative type and µ be a
measure on R+ such that

∞∫
0

min
{

1,
1

x

}
dµ(x) <∞.

Then,

(t, s) 7→
∞∫

0

1

x
(1− e−xφ(t,s))dµ(x)

is of negative type. In particular φα is of negative type for all 0 < α ≤ 1.

Lemma 3.5.
Let 0 ≤ p ≤ 2. Then the function t 7→ |t|p is of negative type.

For proofs to these three lemmas see [P].

Lemma 3.6.
The norms ‖ · ‖p of the spaces Lp, 1 ≤ p ≤ 2, are of negative type.

Proof. Let 1 ≤ p ≤ 2. It holds that

n∑
i,j=1

‖xi − xj‖ppaiaj =
n∑

i,j=1

∫
Ω

|xi(ω)− xj(ω)|pdµ(ω)aiaj

=

∫
Ω

n∑
i,j=1

|xi(ω)− xj(ω)|paiajdµ(ω).

Since Lemma 3.5 gives us that t 7→ |t|p is of negative type and, therefore,
that

n∑
i,j=1

|xi(ω)− xj(ω)|paiaj ≤ 0,
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if
∑n

i=1 ai = 0, we got that

n∑
i,j=1

‖xi − xj‖ppaiaj ≤ 0

and that ‖ ·‖pp is of negative type. From Lemma 3.4, together with the choice

of α := 1
p
, it follows that (‖ · ‖pp)α = (‖ · ‖pp)

1
p = ‖ · ‖

p 1
p
p = ‖ · ‖p is of negative

type.

Theorem 3.7.
Let (Ω,F , µ) be a probability space, X : (Ω,F , µ) → (R,B(R)) a random
variable with distribution P, distribution function FP and a λ-integrable
Fourier transform φP, where λ denotes the Lebesgue measure. Then, it holds
that

(i)

∀a, b ∈ R, a < b : FP(b)− FP(a) =

∞∫
−∞

e−iat − e−ibt

2πit
φP(t)dt.

(ii) X has a bound and continuous λ-density fP such that for all x ∈ R

fP(x) =
1

2π

∞∫
−∞

e−ixtφP(t)dt.

(iii)

∀t ∈ R : φP(t) =

∞∫
−∞

eixtfP(x)dx.

Proof. (i): Since e−i· : R→ C, x 7→ e−ix is Lipschitz continuous, there exists
a constant C such that for all a, b, t ∈ R, t 6= 0, it holds that∣∣∣∣e−iat − e−ibtπit

∣∣∣∣ ≤ C|b− a|.

For b → a we get from Lévy’s inversion formula (Appendix, Lemma A.36)
that

lim
b→a

(
P(a < X < b) +

P(X = a) + P(X = b)

2

)
= lim

b→a
P(a < X < b) + lim

b→a

P(X = a) + P(X = b)

2
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= lim
b→a

P(a < X < b) + P(X = a)

Levy
= lim

b→a
lim
c→∞

c∫
−c

e−iat − e−ibt

2πit
φP(t)dt.

Since limb→a P(a < X < b) ≥ 0 we get for all a ∈ R that

P(X = a) ≤ lim
b→a

lim
c→∞

c∫
−c

∣∣∣∣e−iat − e−ibt2πit
φP(t)

∣∣∣∣ dt
< lim

b→a
lim
c→∞

c∫
−c

∣∣∣∣e−iat − e−ibtπit

∣∣∣∣ |φP(t)|dt

= lim
b→a

∞∫
−∞

∣∣∣∣e−iat − e−ibtπit

∣∣∣∣ |φP(t)|dt

Lipschitz

≤ lim
b→a

C|b− a|
∞∫

−∞

|φP(t)|dt = 0

and, therefore, that P(X = a) = 0.
Analogously, one gets P(X = b) = 0 for all b ∈ R from using Lévy inversion
formula for a → b. Once again, with Lévy’s inversion formula it follows for
every a < b that

lim
c→∞

c∫
−c

e−iat − e−ibt

2πit
φP(t)dt

Levy
= P(a < X < b) +

P(X = a) + P(X = b)

2

= P(a < X < b) = FP(b)− FP(a).

(ii): Using (i) together with the dominated convergence theorem (see Ap-
pendix, Lemma A.6), we get that

F ′P(a) = lim
b→a

FP(b)− FP(a)

b− a

= lim
b→a

lim
c→∞

c∫
−c

e−iat − e−ibt

2πit(b− a)
φP(t)dt

=

∞∫
−∞

1

2πit

(
lim
b→a

e−iat − e−ibt

b− a

)
φP(t)dt
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=

∫ ∞
−∞
− 1

2πit

(
lim
b→a

e−ibt − e−iat

b− a

)
φP(t)dt

=
1

2π

∞∫
−∞

− 1

it
(−it)e−iatφP(t)dt

=
1

2π

∞∫
−∞

e−iatφP(t)dt =: fP(a), ∀a ∈ R.

Thereby, we have shown the differentiability of FP with F ′P = fP and that fP
is a λ-density of X.
Using a continuity lemma (see Appendix, Theorem A.7), one sees that the
continuity of fP follows. Namely, for f(t, x) := fP(t)1R(x) = 1

2π
e−iatφP(t)1R(x)

it holds for every t ∈ R that, t 7→ f(t, x) is in L1(µ) for all x ∈ R and
that x 7→ f(t, x) is continuous in t, for all t ∈ R. Additionally t 7→
supx∈R |f(t, x)| = |f(t, x)| is in L1(µ) and the assumptions from Theorem A.7
are fulfilled, which then gives the continuity of fP, for each t ∈ R.

The boundedness of fP, for each x ∈ R, follows from

|fP(x)| =

∣∣∣∣∣∣ 1

2π

∞∫
−∞

e−ixtφP(t)dt

∣∣∣∣∣∣ ≤ 1

2π

∞∫
−∞

|e−ixt||φP(t)|dt ≤ 1

2π

∞∫
−∞

|φP(t)|dt <∞,

since φP ∈ L1(R,B, λ).
(iii) easily follows from

φP(t) = EeiXt =

∫
R

eixtdP(x) =

∫
R

eixtfP(x)dx.

Corollary 3.8.
Let 0 < α ≤ 2. Then, there exists an integrable function hα : R→ R with

∀u ∈ R : e−|u|
α

=

∞∫
−∞

eiushα(s)ds.

Furthermore, it holds for every β with 0 < β < α that

∞∫
−∞

hα(s)|s|βds <∞.
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Proof. The function u 7→ e−|u|
α

is positive semidefinite. From Lemma 3.5
we get that u 7→ |u|p is of negative type for 0 < p ≤ 2. The positive
semidefiniteness of this function follows from Lemma 3.3.
With the Lemma of Bôchner (Appendix, Lemma A.35) we see that u 7→ e−|u|

α

is the characteristic function of a Borel probability measure Pα on R.
The existence of a density hα with Pα = hαds, coming from Theorem 3.7,
closes the proof.

Corollary 3.9.
From the Lemma of Bôchner (Appendix Lemma A.35) it follows that there
exists a Borel probability measure Pα on R such that

e−|u|
α

=

∞∫
−∞

eiusdPα(s)

is the Fourier transform or characteristic function of Pα.

Lemma 3.10.
Let 0 < β < 2. Then, for all u ∈ R it holds that

∞∫
0

1− cos(λu)

λβ+1
dλ = |u|β

∞∫
0

1− cos(λ)

λβ+1
dλ.

Proof. For every λ ∈ R it holds that 1 − cos(λ) ≤ 2 and cos(λ) ≥ 1 − λ2

2
.

Hence, it holds that 1− cos(λ) ≤ λ2

2
. It follows that

∞∫
0

1− cos(λu)

λβ+1
dλ =

1∫
0

1− cos(λu)

λβ+1
dλ+

∞∫
1

1− cos(λu)

λβ+1
dλ

≤
1∫

0

λ2

2

λβ+1
dλ+

∞∫
1

2

λβ+1
dλ =

1

2

1∫
0

λ1−βdλ+

∞∫
1

2

λβ+1
dλ

0<β<2
< ∞

and, therefore, that the integral exists.
To show the equality we first note that the cosine is a symmetric function
and it therefore suffices to show the equality for |u|. Using the substitution
y(λ) := |u|λ we get

∞∫
0

1− cos(λ|u|)
λβ+1

dλ =

∞∫
0

1− cos(y)

( y
|u|)

β+1

1

|u|
dy = |u|β

∞∫
0

1− cos(y)

yβ+1
dy
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The next lemma is the central lemma of this chapter since it proves (i) of
Theorem 3.1. Two proves will be given of this, namely, a proof for the finite
dimensional case that makes no use of the Kolmogorov existence theorem
but is quite insightful, and another proof for the infinite dimensional case
making use of the Kolmogorov existence theorem. Although the proof for
the infinite dimensional case also holds in the finite dimensional case, these
distinctions will allow us to see where the first proof breaks down and the
second holds.

Lemma 3.11.
Let ‖ · ‖ be a norm on a real Banach space X such that for some α, with
0 < α ≤ 2, ‖·‖α is of negative type. Then, for each β, 0 < β < α, there exists
a probability space (Ω,F ,P) such that X is linear isometric to a subspace of
Lβ(Ω,F ,P). (If α = 2, X is isometric to a subspace of Lβ(Ω,F ,P) for every
β > 0).

Proof. (finite-dimensional case)
Let X be a finite dimensional Banach space such that ‖ · ‖α is of negative
type. From Lemma 3.3 we have that exp(−‖x‖α) is positive semidefinite.
Let x1, ..., xn be a basis of X. Then the function gx1,...,xn : Rn → R with

gx1,...,xn(t) = exp

(
−

∥∥∥∥∥
n∑
i=1

tixi

∥∥∥∥∥
α)

is positive semidefinite. From the Lemma of Bôchner (Appendix, Lemma A.35)
it follows that gx1,...,xn is the Fourier transform, or characteristic function re-
spectively, of a measure P on Rn, i.e.,

gx1,...,xn(t) =

∫
Rn

ei〈t,y〉dP(y).

Hence, we got ∫
Rn

eiλ〈t,y〉dP(y) = exp

(
−λα

∥∥∥∥∥
n∑
i=1

tixi

∥∥∥∥∥
α)

.

Since this is a pure real expression, we get from Euler’s formula that∫
Rn

cos(λ〈t, y〉)dP(y) = exp

(
−λα

∥∥∥∥∥
n∑
i=1

tixi

∥∥∥∥∥
α)

.
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From Corollary 3.8 we know that there exists a function hα : R → R such
that for all u ∈ R

e−|u|
α

=

∞∫
−∞

eiushα(s)ds
Euler

=

∞∫
−∞

cos(us)hα(s)ds

and, hence,∫
Rn

cos(λ〈t, y〉)dP(y) =

∞∫
−∞

cos

(
λs

∥∥∥∥∥
n∑
i=1

tixi

∥∥∥∥∥
)
hα(s)ds.

We have
∫
Rn dP = 1 and 1 = e−|0|

α
=
∫∞
−∞ e

i·0·shα(s)ds =
∫∞
−∞ hα(s)ds and,

thereby, that∫
Rn

1− cos(λ〈t, y〉)dP(y) =

∞∫
−∞

1− cos

(
λs

∥∥∥∥∥
n∑
i=1

tixi

∥∥∥∥∥
)
hα(s)ds.

As next step we divide both sides by λβ+1 and integrate w.r.t. λ to get

∞∫
0

∫
Rn

1− cos(λ〈t, y〉)
λβ+1

dP(y)dλ =

∞∫
0

∞∫
−∞

1− cos (λs ‖
∑n

i=1 tixi‖)
λβ+1

hα(s)dsdλ.

Since f : [0,∞]× Rn → R̄, (λ, y) 7→ 1−cos(λ〈t,y〉)
λβ+1 is continuous up to the Null

set {0}×R and non-negative, Tonelli’s Theorem (Appendix, Theorem A.37)
yields∫
Rn

∞∫
0

1− cos(λ〈t, y〉)
λβ+1

dλdP(y) =

∞∫
−∞

∞∫
0

1− cos (λs ‖
∑n

i=1 tixi‖)
λβ+1

hα(s)dλds.

Now we can use the identity from Lemma 3.10 to get∫
Rn

|〈t, y〉|β
∞∫

0

1− cos(λ)

λβ+1
dλdP(y) =

∫
Rn

∞∫
0

1− cos(λ〈t, y〉)
λβ+1

dλdP(y)

=

∞∫
−∞

∞∫
0

1− cos (λs ‖
∑n

i=1 tixi‖)
λβ+1

hα(s)dλds

=

∞∫
−∞

|s|β
∥∥∥∥∥

n∑
i=1

tixi

∥∥∥∥∥
β ∞∫

0

1− cos(λ)

λβ+1
hα(s)dλds.
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Hence, we got ∫
Rn

|〈t, y〉|βdP(y) =

∥∥∥∥∥
n∑
i=1

tixi

∥∥∥∥∥
β ∞∫
−∞

|s|βhα(s)ds.

The finiteness of these expressions follows from Corollary 3.8.

For the map Φ : X → Lβ(Rn,P) with Φ(
∑n

i=1 tixi) := 1
c

∑n
i=1 tiφi, where

c := (
∫∞
−∞ |s|

βhα(s)ds)
1
β and φi(w) := wi, it holds that∥∥∥∥∥

n∑
i=1

tixi

∥∥∥∥∥
β

=
1

cβ

∫
Rn

|〈t, y〉|βdP(y)

=
1

cβ

∫
Rn

∣∣∣∣∣
n∑
i=1

tiyi

∣∣∣∣∣
β

dP(y)

=

∫
Rn

∣∣∣∣∣1c
n∑
i=1

tiφi(y)

∣∣∣∣∣
β

dP(y)

=

∫
Rn

∣∣∣∣∣Φ(
n∑
i=1

tixi)(y)

∣∣∣∣∣
β

dP(y)

=

∥∥∥∥∥Φ(
n∑
i=1

tixi)

∥∥∥∥∥
β

β

Hence, Φ is an isometry.
We show the linearity. Let v, w ∈ X. Then, there exist ti, si ∈ R, i = 1, .., n
such that v =

∑n
i=1 tixi and w =

∑n
i=1 sixi. It follows that

Φ(v + w) = Φ(
n∑
i=1

tixi +
n∑
i=1

sixi) = Φ(
n∑
i=1

(ti + si)xi) =
n∑
i=1

(ti + si)φi

=
n∑
i=1

tiφi +
n∑
i=1

siφi = Φ(
n∑
i=1

tixi) + Φ(
n∑
i=1

sixi) = Φ(v) + Φ(w).

Furthermore, it holds for λ ∈ R that

Φ(λv) = Φ(λ
n∑
i=1

tixi) = Φ(
n∑
i=1

λtixi) =
n∑
i=1

λtiφi = λ
n∑
i=1

tiφi = λΦ(v).

Therefore Φ is a linear isometry.
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Proof. (infinite dimensional case)
Let X be a real Banach space such that ‖ · ‖α is of negative type. From
Lemma 3.3 it follows that exp(−‖·‖α) is positive semidefinite. Let x1, ..., xn ∈
X. Then the function gx1,...,xn : Rn → R with

gx1,...,xn(t) = exp

(
−

∥∥∥∥∥
n∑
i=1

tixi

∥∥∥∥∥
α)

is positive semidefinite and it holds that gx1,...,xn(0) = 1. From the Lemma
of Bôchner (Appendix, Lemma A.35) it follows that gx1,...,xn is the Fourier
transform, or characteristic function respectively, of a measure P{x1,...,xn} on
Rn, i.e.,

gx1,...,xn(t) =

∫
Rn

ei〈t,y〉dP{x1,...,xn}(y).

Hence, we obtain∫
Rn

eiλ〈t,y〉dP{x1,...,xn}(y) = exp

(
−λα

∥∥∥∥∥
n∑
i=1

tixi

∥∥∥∥∥
α)

.

Thus, we have a family of probability spaces (Ω{x1,...,xn},B{x1,...,xn},P{x1,...,xn}),
where actually Ω{x1,...,xn} = Rn holds.

Consider a semi ordering on the index set Γ := {(x1, ..., xn)| n ∈ N, xi ∈ X}
defined by ∀n, k ∈ N : (x1, ..., xn) ≤ (y1, ..., yk) ⇐⇒ {x1, ..., xn} ⊆
{y1, ..., yk}.

For k ≥ n, the maps φ
{x1,...,xk}
{x1,...,xn} : Ω{x1,...,xk} → Ω{x1,...,xn}, (t1, ..., tk) 7→

(t1, ..., tn), are the projections onto the first n coordinates. If the coordi-
nates appear in a different order we get a corresponding projection.
We show now that the measures P{x1,...,xn} are consistent (Definition 2.32),
i.e.,

P{x1,...,xk} ◦
(
φ
{x1,...,xk}
{x1,...,xn}

)−1

= P{x1,...,xn}.

The theorem on the uniqueness of the Fourier transform (Appendix, Theo-
rem A.34) tells us that it suffices to show the following.
We know that for all t = (t1, ..., tn) ∈ Rn it holds that∫

Rn

eiλ〈t,y〉dP{x1,...,xn}(y) = exp

(
−λα

∥∥∥∥∥
n∑
i=1

tixi

∥∥∥∥∥
α)

. (3.1)



CHAPTER 3. CHARACTERIZATION OF SUBSPACES OF LP 35

On the other hand we get from the transformation formula (Appendix, The-
orem A.18) that∫

Rn

eiλ〈t,y〉dP{x1,...,xk} ◦
(
φ
{x1,...,xk}
{x1,...,xn}

)−1

(y)

=

∫
Rk

eiλ(t,·) ◦ φ{x1,...,xk}{x1,...,xn}(z)dP{x1,...,xk}(z)

=

∫
Rk

exp(iλ
n∑
`=1

t`φ
{x1,...,xk}
{x1,...,xn}(z)(`))dP{x1,...,xk}(z)

=

∫
Rk

eiλ
∑n
`=1 t`z`dP{x1,...,xk}(z)

=

∫
Rk

eiλ〈t,z〉dP{x1,...,xk}(z)

(4.1)
= exp

(
−λα

∥∥∥∥∥
k∑
i=1

tixi

∥∥∥∥∥
α)

= exp

(
−λα

∥∥∥∥∥
n∑
i=1

tixi

∥∥∥∥∥
α)

,

where the last equation holds because of tn+1 = ... = tk = 0.

Therefore, we have that P{x1,...,xk} ◦
(
φ
{x1,...,xk}
{x1,...,xn}

)−1

and P{x1,...,xn} have the

same Fourier transform and, hence, that the consistency of the measures
P{x1,...,xn} follows from the uniqueness theorem (Appendix, Theorem A.34).
It follows now, with Corollary 2.34, as a direct consequence of the Kol-
mogorov existence theorem, that there exists a measure space (Ω,F ,P), with
Ω =

⊗∞
i=1 Ω{x1,...,xi} and projections π{x1,...,xn} : Ω→ Rn for which the holds

that
P ◦ (π{x1,...,xn})

−1 = P{x1,...,xn}.

In particular, there exists for each x ∈ X a measure Px on R with

e−‖tx‖
α

=

∫
Rn

eitsdPx(s) =

∫
R

eitsdP ◦ (πx)
−1(s) =

∫
Ω

eitπx(ω)dP(ω)

Euler
=

∫
Ω

cos(itπx(ω))dP(ω).
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Now we define the embedding I : X → Lβ(Ω,P) by I(x) := 1
c
πx, where

c := (
∫∞
−∞ |s|

βhα(s)ds)
1
β . We show that I is a well-defined linear isometry.

We have e−‖tx‖
α

=
∫

Ω
cos(itπx(ω))dP(ω) and e−|λu|

α
=
∫∞
−∞ cos(λus)hα(s)ds,

and, thereby, for ‖x‖ = |u| that

∫
Ω

cos(itπx(ω))dP(ω) =

∞∫
−∞

cos(‖λx‖s)hα(s)ds

holds. From
∫
Rn dP = 1 and 1 =

∫∞
−∞ hα(s)ds one sees that

∫
Ω

1− cos(itπx(ω))dP(ω) =

∞∫
−∞

1− cos(λ‖x‖s)hα(s)ds.

Dividing by λβ+1 and integrating w.r.t λ gives that

∞∫
0

∫
Ω

1− cos(itπx(ω))

λβ+1
dP(ω)dλ =

∞∫
0

∞∫
−∞

1− cos(λ‖x‖s)
λβ+1

hα(s)dsdλ.

Analogously, as in the proof for the finite dimensional case we get by Tonelli’s
theorem (Appendix, Theorem A.37) that

∫
Ω

∞∫
0

1− cos(itπx(ω))

λβ+1
dλdP(ω) =

∞∫
−∞

∞∫
0

1− cos(λ‖x‖s)
λβ+1

hα(s)dλds

and furthermore by Lemma 3.10 that∫
Ω

|πx(ω)|β
∞∫

0

1− cos(λ)

λβ+1
dλdP(ω) =

∫
Ω

∞∫
0

1− cos(itπx(ω))

λβ+1
dλdP(ω)

∞∫
−∞

∞∫
0

1− cos(λ‖x‖s)
λβ+1

hα(s)dλds =

∞∫
−∞

|s|β‖x‖β
∞∫

0

1− cos(λ)

λβ+1
hα(s)dλds.

Hence, ∫
Ω

|πx(ω)|βdP(ω) = ‖x‖β
∞∫

−∞

|s|βhα(s)ds
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holds and, in particular, we get that∫
Ω

|πx(ω)|βdP(ω)

 1
β

= ‖x‖

 ∞∫
−∞

|s|βhα(s)ds

 1
β

,

which is, following from Corollary 3.8, finite and therefore well-defined.

From this result and the fact that ‖πx‖β =
∫

Ω
|πx(ω)|βdP(ω) it follows im-

mediately that I is an isometry, since

‖I(x)‖ββ =

∥∥∥∥1

c
πx

∥∥∥∥β
β

=
1

cβ
‖πx‖ββ =

1

cβ
‖x‖β

∞∫
−∞

|s|βhα(s)ds = ‖x‖β.

To show the linearity we consider that∫
Rk

exp(iλ
n∑
`=1

t`πx`(ω))dP(ω) = exp(−λα‖
n∑
i=1

tixi‖α) (3.2)

and ∫
Rn

eiλ〈t,y〉dP{x1,...,xn}(y) = exp(−λα‖
n∑
i=1

tixi‖α)

holds. Thereby, it follows, together with the consistency of P{x1,...,xn}, that

exp(−λα‖
n∑
i=1

tixi‖α) =

∫
Rn

eiλ〈t,y〉dP ◦ (π{x1,...,xn})
−1(y)

=

∫
Ω

eiλ(t,π{x1,...,xn}(ω))dP(ω)

=

∫
Ω

exp(iλ
n∑
`=1

t`(π{x1,...,xn}(ω))(`))dP(ω).

It remains to observe that (π{x1,...,xn}(ω))(`) = πxl(ω) holds, which follows
form

∀γ1 ≤ γ2 : ω(γ1) = φγ2γ1(ω(γ2)), (3.3)

and the definition of π by πγ(ω) = ω(γ), since we have that

πxl(ω)
(4.3)
= ω(xl) = φ{x1,...,xn}xl

(ω(x1, ..., xn))
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= φ{x1,...,xn}xl
(π{x1,...,xn}(ω)) = (π{x1,...,xn}(ω))(`).

First, we show I(tx) = tI(x). For all λ ∈ R it holds that

1 = e−‖λ(tx−tx)‖α =

∫
Ω

eiλ(tπx(ω)−πtx(ω))dP(ω) =

∫
Ω

cos(λ(tπx(ω)−πtx(ω)))dP(ω)

and, in particular, for λ = 1 that

1 =

∫
Ω

cos(tπx(ω)− πtx(ω))dP(ω).

Hence, for P-almost all ω ∈ Ω, it has to hold that

tπx(ω)− πtx(ω) = 2πk(ω), k(ω) ∈ Z \ {0},

and, thereby, for λ = 1
2π

that

1 =

∫
Ω

cos(
1

2π
(tπx(ω)− πtx(ω)))dP(ω)

=

∫
Ω

cos(
1

2π
2πk(ω))dP(ω) =

∫
Ω

cos(k(ω))dP(ω),

and, consequently, that k(ω) has to be P-almost everywhere equal to 0, since
else it would follow from k(ω) ∈ Z that π ∈ Q, which would be a contradic-
tion. Hence, we have that tπx(ω) = πtx(ω)

Finally, we show that I(x + y) = I(x) + I(y). Following the proof of
I(tx) = tI(x), we have for all λ ∈ R that

1 = e−‖λ(x+y−x−y)‖α

=

∫
Ω

eiλ(πx+y(ω)−πx(ω)−πy(ω))dP(ω)

=

∫
Ω

cos(λ(πx+y(ω)− πx(ω)− πy(ω)))dP(ω)

holds and particularly for λ = 1 that

1 =

∫
Ω

cos(πx+y(ω)− πx(ω)− πy(ω))dP(ω).
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Just as before it has to hold, for P-almost all ω ∈ Ω, that

πx+y(ω)− πx(ω)− πy(ω) = 2πk(ω), k(ω) ∈ Z \ {0},

and, analogously, for λ = 1
2π

that

1 =

∫
Ω

cos(
1

2π
(πx+y(ω)− πx(ω)− πy(ω)))dP(ω)

=

∫
Ω

cos(
1

2π
2πk(ω))dP(ω) =

∫
Ω

cos(k(ω))dP(ω),

With the same argument as before we see that k(ω) = 0 P-almost everywhere
and that πx+y(ω) = πx(ω) + πy(ω) holds.

We close this chapter with the short proof of Theorem 3.1 by putting
together what we have so far.

Proof. (For Theorem 3.1)
(i) This is exactly the statement of Lemma 3.11.

(ii) Since X is isometric to a subspace of Lp(Ω,F ,P), 1 ≤ p ≤ 2, it holds
that ‖ · ‖p = ‖ · ‖Lp and, therefore, by Lemma 3.6 that ‖ · ‖p is of negative
type on X.



Chapter 4

Majorizing Measures Theorem

The following chapter is dedicated to Michel Talagrand’s and Xavier Fer-
nique’s majorizing measures theorem, a deep and powerful result in the the-
ory of stochastic processes that provides bounds for the expectation of the
supremum of a stochastic process with subgaussian tails.

We start by introducing out setting: we consider a collection of mean-zero
random variables X := (Xt)t∈T , i.e., EXt = 0, for all t ∈ T , where the index
set T is equipped with a distance d such that (T, d) becomes a metric space.
Moreover, X is assumed to have subgaussian tails, i.e.,

∀s, t ∈ T ∀u > 0 : P (|Xt −Xs| > u) ≤ 2 exp

(
− u2

d2(t, s)

)
.

Consider for a moment the special case that X is a Gaussian process, i.e., a
process where each finite-dimensional distribution is a multivariate normal
distribution. Then, this process is fully characterized by the family of covari-
ances, i.e., (E (XsXt))s,t∈T .
By considering the L2-metric, the natural distance that comes to mind is the
following:

d(s, t) =
(
E |Xs −Xt|2

)1/2
.

Note that this is only a pseudometric [L], i.e., d(s, t) = 0 does in general
not imply that Xs − Xt = 0. Thus, we are able to completely characterize
the process X by its distances (d(s, t))s,t∈T , up to translation by a Gaussian
random variable Xt0 , t0 ∈ T , since the process (Xt −Xt0)t∈T will yield the
same distances as X.
If we want to have a clear picture in mind of what is going on, we will turn
to this case.

40
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By B(t, ε) we denote the closed ball centered at t ∈ T with radius ε > 0
in the metric d and by diam(A) the diameter of the set A ⊆ T w.r.t d, i.e.,
diam(A) = sup{d(x, y) : x, y ∈ A}. By C we refer to a positive absolute
constant, which may change from line to line.

Our first goal will be to find upper bounds for E supt∈T Xt. Note that we use
the definition E supt∈T Xt := sup{E supt∈F Xt : F ⊂ T , F finite} to avoid
problems with the supremum over possibly uncountably many random vari-
ables. The picture we should have in mind (the figure shown below is taken
from [L]), is the following: for a finite F ⊂ Rn, n ∈ N, and a standard
Gaussian g on Rn, we can write Xt = 〈g, t〉 and think of the process X as
the projections of F onto a uniformly random direction. This is possible,
because the orthogonal projection onto a direction g ∈ Rn can be written
as 〈g, t〉 g

‖g‖2 and, thus, 〈g, t〉 determines the position of process on the line
R · g ⊆ Rn. The picture we should have in mind is thus the following:

Figure 4.1: Points in F ⊂ R2 projected onto a random direction.

Talagrand’s majorizing measures theorem provides such upper bounds
for E supt∈T Xt. Its statement is the following and can be found in [T1], in
particular, Proposition 2.3.:

Theorem 4.1. (Majorizing measures theorem)
Let X = (Xt)t∈T be a stochastic process as above and let µ be a probability
measure on T . Let r ≥ 2 and i ∈ N the largest natural number such that
diam(T ) ≤ 2r−i. Let (Aj)j≥i be an increasing sequence of partitions of T so
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that Ai = T and diam(Aj) ≤ 2r−j for each j ≥ i, A ∈ Aj. Then, there exists
a constant C > 0 only depending on r such that

E sup
t∈T

Xt ≤ C(r) sup
t∈T

∑
j>i

r−j

√
log

1

µ(Aj(t))
,

where Aj(t) denotes the unique element of Aj containing t.

Remark. Note that the quality of this estimate depends on the probability
measure µ on T . A probability measure µ that provides a “decent” bound is
referred to as a majorizing measure.

Remark. In [T1], Talagrand shows the following estimate, which is the most
elaborate form of the majorizing measures theorem: there exists a universal
constant K > 0 such that

1

K
γ(T, d) ≤ E sup

t∈T
Xt ≤ Kγ(T, d),

where

γ(T, d) := inf{sup
t∈T

∫ ∞
0

√
log

1

µ(B(t, ε))
dε : µ prob. measure on T}.

The upper bound can be shown by a combination of Lemma 4.2 and Lemma 4.5
below. The lower bound is derived by the Gaussian isoperimetric inequality
and the famous Sudakov minoration. For details we refer to [T1].

In the second part of this chapter, we will turn to the question of how
to construct those sequences of partitions. For this purpose we will use a
partition scheme going back to Talagrand.

We start our investigation with Talagrands proof of Theorem 4.1, which
uses the so-called “generic chaining”, an argument that already appears in
the work of Kolmogorov.

Proof. (Majorizing measures theorem)
As a first step, we introduce the reformulation E supt∈T Xt = E supt∈T (Xt −
Xt0), which is possible since we are dealing with mean-zero random variables.
The random variable Y := supt∈F (Xt − Xt0), F ⊂ T finite, is now non-
negative, so we can write

EY =

∞∫
0

P(Y ≥ u)du.
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Hence, we are interested in bounding P(supt∈T (Xt −Xt0) ≥ u).
The natural estimate that comes to mind is the union bound,

P(sup
t∈F

(Xt −Xt0) ≥ u) ≤
∑
t∈F

P(Xt −Xt0 ≥ u). (4.1)

If there only a few uncorrelated random variables this bound is quite good,
it is very bad for correlated ones (and especially for a big number of them),
since then, for each random variable a term of roughly the same size will
appear and the bound is vastly overestimating the supremum.
This is where the idea of the generic chaining comes into play by regrouping
the random variables Xt which are nearly identical. We illustrate the idea
with T consisting of two finite subsets. At the first level, we consider the
finite subsets T1, T2 ⊂ T . The setting is shown in Figure 4.2, which was also
taken from [L]. In each of the two subsets T1 and T2 some Gaussians are
clustered together and therefore highly correlated. Thus, projecting them
onto a random direction will project them closely together. We choose now
representatives p1(t) ∈ T1 and p2(t) ∈ T2 for t ∈ T .

Figure 4.2: Gaussian random variables clustered together.

Therefore, we can write

Xt −Xt0 = Xt −Xp1(t) +Xp1(t) −Xt0 , (4.2)

Xt −Xt0 = Xt −Xp2(t) +Xp2(t) −Xt0 , (4.3)
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where the terms Xp1(t)−Xt0 and Xp2(t)−Xt0 can be handled with (4.1), i.e.,

P
(

sup
t∈F

(Xt −Xt0) ≥ u

)
≤ P

(
Xp1(t) −Xt0 ≥

u

2

)
+ P

(
Xp2(t) −Xt0 ≥

u

2

)
+
∑
t∈T1

P
(
Xt −Xp1(t) ≥

u

2

)
+
∑
t∈T2

P
(
Xt −Xp2(t) ≥

u

2

)
.

There is no reason to stop at one step and we can repeat this procedure
on subsets of T1, T2, and the terms Xt − Xp1(t), Xt − Xp2(t). Clearly, this
prescription works for any finite number of subsets and also for a different
splitting than u = u/2 + u/2.
So we can approximate t0 by a “chain” of representatives lying in a finite,
ascending sequence of subsets of T , i.e., {t0} = T0 ⊂ ... ⊂ Tn ⊂ T , n ∈ N.
Hence, the name “generic chaining”.
A way to choose these representative would be for example the “best approx-
imations” of t in each of the subsets.
The quality of this approximation will be measured through comparison with
numbers r−i, i ∈ Z, r ≥ 2. For the set T we choose the largest i ∈ Z such
that diam(T ) ≤ 2r−i.

We work out this prescription more elaborately now. For j ≥ i, we con-
sider finite sets Πj ⊂ T and points πj(t) ∈ Πj for t ∈ T such that the points
πj(t) are successive approximations of t. Obviously, πi(t) = t0 has to hold.
Hence, Xt −Xt0 can be decomposed moving from t0 to t along the “chain”
πj(t), as

Xt −Xt0 =
∑
j>i

Xπj(t) −Xπj−1(t). (4.4)

To ensure the convergence of (4.4) the mild condition

lim
j→∞

d(t, πj(t)) = 0 (4.5)

suffices, while in order to guarantee that πj(t) approximates t, it is enough
to assume

∀t ∈ T ∀j > i : d(πj(t), πj−1(t)) ≤ 2r−j+1. (4.6)

Additionally, we assume the following two minor restrictions:

∀s, t ∈ T : πj(t) = πj(s) =⇒ πj−1(t) = πj−1(s) (4.7)

and
∀v ∈ Πj : πj(v) = v. (4.8)
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Introducing (4.7) lowers the number of possible increments to control, while
both of them combined give πj−1(t) = πj−1(πj(t)). Hence, controlling Xπj(t)−
Xπj−1(t) means controlling Xv −Xπj−1(v), for all v ∈ Πj.

Assume now that for certain numbers aj(v), depending on j and v, we have,
for some u > 0,

∀v ∈ Πj : Xv −Xπj−1(v) ≤ uaj(v). (4.9)

Setting S = supt∈T
∑

j>i aj(πj(t)), we get, by (4.5) and (4.9), that

∀t ∈ F : Xt −Xt0 ≤ uS.

Using now (4.4), (4.6) and the subgaussian tail estimate, one can show

P(sup
t∈F

(Xt −Xt0) ≥ uS) ≤
∑
j>i

∑
v∈Πj

P(Xv −Xπj−1(v) ≥ uaj(v))

≤
∑
j>i

∑
v∈Πj

2 exp

(
−

u2a2
j(v)

(2r−j+1)2

)
.

(4.10)

We require now that the right-hand side of (4.10) is less than or equal to 1 to
make sense. The most natural choice is to require that this is true for u = 1.
Hence, ∑

j>i

∑
v∈Πj

2 exp

(
−

a2
j(v)

(2r−j+1)2

)
≤ 1.

We set

wj(v) = 2 exp

(
−

a2
j(v)

(2r−j+1)2

)
(4.11)

and want to have that
∑
wj(v) ≤ 1. This allows us to incorporate probability

in this investigation.
Consider a probability measure µ on T and set

∀j > 1 ∀v ∈ Πj : wj(v) = µ({v}).

Then, by (4.11), aj(v) = 2r−j+1
√

log 2
µ({v}) and

S = 2 sup
t∈T

∑
j>i

r−j+1

√
log

2

µ({πj(t)})
.

For u ≥ 1, the right-hand side of (4.10) gives
∑

j>i

∑
v∈Πj

2(
wj(v)

2
)u

2 ≤ 21−u2 ,

since 2(
wj(v)

2
)u

2 ≤ wj(v)21−u2 , ensuring E supt∈F (Xt −Xt0) ≤ CS. Thus,

E sup
t∈T

Xt ≤ C sup
t∈T

∑
j>i

r−j+1

√
log

2

µ({πj(t)})
. (4.12)
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Consider now the partition (Aj)j≥i and choose, for each j ≥ i and A ∈ Aj,
an arbitrary point xA ∈ A. For each t ∈ T define

πj(t) = xAj(t). (4.13)

Then, (4.5),(4.6),(4.7) and (4.8) hold, since (Aj)j≥i is an increasing sequence.
From

∑
j>i

∑
A∈Aj 2−j+iµ(A) ≤ 1, we get that there exists a probability

measure µ′ on T such that µ′({xA}) > 2−j+iµ(A) for all j > i and A ∈ Aj.
Applying (4.12) to µ′ then gives

E sup
t∈T
≤ sup

t∈T

∑
j>i

r−j+1

√
log

2j−i+1

µ(Aj(t))
. (4.14)

Using the inequality
√
a+ b ≤

√
a+
√
b, we see that√

log
2j−i+1

µ(Aj(t))
≤
√
j − i+ 1

√
log 2 +

√
log

1

µ(Aj(t))
,

and by using
∑

j>i r
−j√j − i+ 1 ≤ C(r)r−i, we conclude that the right-hand

side of (4.14) is at most

C(r)

(
r−i + sup

t∈T

∑
j>i

√
log

1

µ(Aj(t))

)
.

By the definition of i, we see that diam(T ) > 2r−j−1. Assume that card(Ai+1) =
1. Then the only A ∈ Ai+1 fulfills diam(A) ≤ 2r−j−1 and implies that
diam(T ) ≤ 2r−j−1. This is a contradiction and therefore card(Ai+1) > 1.
Consequently, there exists an A ∈ Ai+1 with µ(A) ≤ 1/2. Then, if t ∈ A, we
have

r−i ≤ C(r)

(
r−i−1

√
log

1

µ(Ai+1(t))

)
,

and subsequently

E sup
t∈T

Xt ≤ C(r) sup
t∈T

∑
j>i

r−j

√
log

1

µ(Aj(t))
.

We now turn to the partitioning scheme, which will allow us to construct
a partition as above. We will use this partition scheme in Lemma 4.3. This
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scheme will produce an increasing sequence of partitions of T , for which we
can guarantee that there exists a uniform bound to the maximal diameter
of the elements of each partition, and that the number of elements of the
partitions are bounded in some sense. In particular, it will guarantee the
finiteness of each partition Aj.

We are going to work in the following framework: assume that we have
maps ϕj : T → R+, j ∈ Z, for which

S = sup{ϕj(t) : j ∈ Z, t ∈ T} <∞ (4.15)

holds. Furthermore, assume a function θ : N→ R+ exists such that

lim
n→∞

θ(n) =∞. (4.16)

Additionally, we assume for certain numbers r ≥ 4, β > 0, that for any point
s ∈ T , any j ∈ Z and any n ∈ N we have: for any point t1, ..., tn ∈ B(s, r−j)
for which

∀p, q ≤ n : p 6= q =⇒ d(tp, tq) ≥ r−j−1 (4.17)

holds, we have
ϕj(s) ≥ r−βjθ(n) + min

`≤n
ϕj+2(t`). (4.18)

In Figure 4.3, a generic instance of this framework is displayed. Given
fixed r and β, the point a shown in the picture has to be below ϕj(s) for any
s,j,n and t1, ..., tn as specified above.

Remark. The maps ϕj serve the purpose of being a measure of the size
of B(s, 3r−j). Since the numbers ϕj+2(t`) depend only on the respective
B(t`, 3r

−j−2) balls, we know on the one hand, by d(t`, t`′) ≥ r−j−1, for ` 6= `′

and r ≥ 8, that they are well separated from each other and on the other
hand, by t` ∈ B(s, r−j) that they lie well inside of B(s, 3r−j).
This is a rather weak condition, since we choose “min” instead of “max” and
ϕj+2 instead of ϕj+1.
To determine such functions one essentially has to guess them using their
dependence on the geometry of T [T1].

Remark. As we will see later on, this setting is slightly more general than
the one we will need. Namely, we will only use the case β = 1. Nevertheless,
this does not change the proofs we will present, so we will not omit it.

As first step we give an example of such a sequence for β = 1.
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Figure 4.3: Illustration of the framework.

Lemma 4.2.
Let µ be a probability measure on T and let

S = sup
t∈T

∞∫
0

√
log

1

µ(B(t, ε))
dε <∞.

By taking r = 8, β = 1 and defining

ϕj(t) = sup

{ r−j∫
0

√
log

1

µ(B(u, ε))
dε : d(t, u) ≤ 2r−j

}
the conditions (4.15)-(4.18) hold with θ(n) = (1/r2)

√
log n.

Proof. One easily sees that ϕj(t) ≤ S < ∞, for all j ∈ Z and all t ∈
T , holds, from which condition (4.15) follows. Moreover, for the choice of
θ(n) = (1/r2)

√
log n also condition (4.16) holds, i.e., limn→∞ θ(n) =∞.

To prove that condition (4.18) is fulfilled, let s, t1, ..., tn be as in (4.17).
For ` ≤ n let s` ∈ B(t`, 2r

−j−2). By the triangle inequality we get

d(s, s`) ≤ d(s, t`) + d(t`, s`)
(4.17)

≤ r−j + 2r−j−2 ≤ 2r−j.

We also see that for ` 6= k we have again by the triangle inequality

d(t`, tk) ≤ d(t`, s`) + d(s`, sk) + d(sk, tk) ≤ d(s`, sk) + 4r−j−2,
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which gives us with the choice of r = 8, that

d(s`, sk) ≥ d(t`, tk)− 4r−j−2
(4.17)

≥ r−j−1 − 4r−j−2
r=8

≥ 4r−j−2.

This means that the (open) balls B(s`, 2r
−j−2) are disjoint for ` ≤ n and we

can find ` such that µ(B(s`, 2r
−j−2)) ≤ 1/n, which simply follows from the in-

equality 1 ≥ µ(B(s, r−j)) ≥
∑n

`=1 µ(B(s`, 2r
−j−2)) ≥ n min

`=1,...,n
µ(B(s`, 2r

−j−2)).

Since s` ∈ B(s, 2r−j−2), we have

ϕj(t) = sup

{ r−j∫
0

√
log

1

µ(B(u, ε))
dε : d(t, u) ≤ 2r−j

}

≥
r−j∫
0

√
log

1

µ(B(s`, ε))
dε

≥
2r−j−2∫

0

√
log

1

µ(B(s`, ε))
dε

≥
r−j−2∫
0

√
log

1

µ(B(s`, ε))
dε+ r−j−2

√
log n,

where the last inequality follows from the integrand being at least
√

log n for
r−j−2 ≤ ε ≤ 2r−j−2. Thus, we have

ϕj(s) ≥
1

r2
r−j
√

log n+ min
`≤n

r−j−2∫
0

√
log

1

µ(B(s`, ε))
dε,

from which we get

ϕj(s) ≥ r−jθ(n) + min
`≤n

ϕj+2(t`)

by taking the supremum over all possible s`.

The following two lemmas are the ones incorporating the scheme for con-
structing partitions as required in Theorem 4.1. In fact, the second lemma
is just an alteration of the first, exchanging the condition (4.18).

Lemma 4.3.
Assume (4.15)-(4.18) holds. Let T have finite diameter, i.e., let i ∈ Z be the
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largest integer such that diam(T ) ≤ 2r−i. Then there exists an increasing
sequence of partitions (Aj)j≥i of T , and one can find a natural number `j(A)
for each A ∈ Aj, such that the following holds:
Each set of Aj has diameter at most 2r−j, and, given j ≥ i, any two sets A
and B of Aj+1, which are contained in an element of Aj, fulfill

`j+1(A) 6= `j+1(B) (4.19)

and
∀t ∈ T :

∑
j≥i

r−βjθ(`j+1(Aj+1(t))) ≤ 4S. (4.20)

Remark. The conditions (4.19) and (4.20) combined with the assumptions
(4.17) and (4.18) yield the finiteness of the partitions Aj.

Proof. We will show this by inductively constructing the partition: for j = i,
we set Ai = {T}, `i(T ) = 1 and we choose a distinguished point ui(T ) such
that

ϕi+2(ui(T )) ≥ sup{ϕi+2 : t ∈ T} − S

2
.

Assume now that the j-th partition Aj has already been constructed and
distinguished points uj(A), for each A ∈ Aj, have been chosen for which

∀t ∈ A : d(t, uj(A)) ≤ r−j (4.21)

holds. In particular this means that diam(A) ≤ 2r−j.
We will now go on by constructing the elements of Aj+1 from the elements
of Aj by an exhaustion argument which goes as follows: at the first step, see
Figure 4.4, we pick t1 ∈ A such that

ϕj+2(t1) ≥ sup{ϕj+2(t) : t ∈ A} − 2i−j−1S,

and define the set D1 := A ∩B(t1, r
−j−1).

We repeat this procedure on A \ D1 instead of A until the set A is ex-
hausted, i.e., we construct points t1, ..., tp ∈ A such that

tp ∈ A \
⋃
`<p

B(t`, r
−j−1),

ϕj+2(tp) ≥ sup

{
ϕj+2(t) : t ∈ A \

⋃
`<p

B(t`, r
−j−1)

}
− 2i−j−1S. (4.22)
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Figure 4.4: Illustration of the first selection.

Figure 4.5: Illustration of the p-th selection.

and define the set Dp := B(tp, r
−j−1) ∩

(
A \

⋃
`<pB(t`, r

−j−1)
)

. See Figure

4.5 at this point
The set containing the sets Dp is thereby a finite partition (Dp)p≥1 of the

set A, where each element Dp has diameter at most 2r−j−1. Partitioning each
of the sets A ∈ Aj in this way and collecting them into a single set gives the
new partition Aj+1.
Choosing now distinguished points and numbers

uj+1(Dp) = tp and `j+1(Dp) = p, (4.23)

we see that (4.19) is indeed fulfilled for the partition Aj+1.

It remains to prove (4.20).
From (4.21) we see that d(uj(A), tp) ≤ r−j holds for each p. Moreover, we
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have constructed the partition in such a way that d(t`, tk) ≥ r−j−1 for all
` < k. Since, by assumption, condition (4.18) holds, we get for each p

ϕj(uj(A)) ≥ r−βjθ(p) + min
`≤p

ϕj+2(t`). (4.24)

We also know that A\
⋃
k<pB(tk, r

−j−1) ⊂ A\
⋃
k<`B(tk, r

−j−1) and therefore

sup

{
ϕj+2(t) : t ∈ A \

⋃
k<`

B(tk, r
−j−1)

}
≥ sup

{
ϕj+2(t) : t ∈ A \

⋃
k<p

B(tk, r
−j−1)

}
.

Since tp ∈ A \
⋃
`<pB(t`, r

−j−1), we get by applying (4.22) to t`, ` ≤ p, that

ϕj+2(t`) ≥ sup

{
ϕj+2(t) : t ∈ A \

⋃
k<`

B(tk, r
−j−1)

}
− 2i−j−1S

≥ ϕj+2(tp)− 2i−j−1S.

Combining this with (4.24) we get

ϕj(uj(A)) ≥ ϕj+2(tp) + r−βjθ(p)− 2i−j−1S. (4.25)

Let t ∈ Dp. Setting A := Aj(t) and Aj+1(t) := Dp we have `j+1(Aj+1(t)) =
`j+1(Dp) = p, and we can rewrite (4.25) as

ϕj(uj(Aj(t))) ≥ ϕj+2(tp) + r−βjθ(`j+1(Aj+1(t)))− 2i−j−1S. (4.26)

Setting u := uj+2(Aj+2(t)) and observing that u ∈ Aj+2(t) ⊂ Aj+1(t) = Dp,
we can conclude that

ϕj+2(tp) ≥ sup

{
ϕj+2(t) : t ∈ A \

⋃
`<p

B(t`, r
−j−1)

}
− 2i−j−1S

≥ sup{ϕj+2(t) : t ∈ Dp} − 2i−j−1S ≥ ϕj+2(u)− 2i−j−1S.

The combination of this with (4.26) yields

ϕj(uj(Aj(t))) ≥ ϕj+2(uj+2(Aj+2(t))) + r−βjθ(`j+1(Aj+1(t)))− 2i−jS.

Now we can rearrange this inequality and sum up over j ≥ i to get∑
j≥i

r−βjθ(`j+1(Aj+1(t)))

≤
∑
j≥i

ϕj(uj(Aj(t)))−
∑
j≥i

ϕj+2(uj+2(Aj+2(t))) +
∑
j≥i

2i−jS

≤ ϕi(ui(Ai(t))) + ϕi+1(ui+1(Ai+1(t))) + 2S ≤ 4S,

for any t ∈ T , which closes the proof.
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Lemma 4.4.
Let (T, d) be a metric space. For each j ∈ Z let ψj : T → R+ be such that
ψj(t) ≤ S for each j ∈ Z and t ∈ T . Under (4.17) let, instead of (4.18), the
following hold:

max
`≤n

ψj+2(t`) ≥ ψj(s) + r−βjθ(n). (4.27)

Then the conclusions of Lemma 4.3 hold.

Proof. By defining ϕj(t) := S − ψj(t) one sees that (4.27) yields (4.18), i.e.,
ϕj(s) ≥ r−βjθ(n) + min`≤n ϕj+2(t`). Applying now Lemma 4.3 gives the
lemma.

The next theorem allows to further estimate the right-hand side of Theo-
rem 4.1, given the sequence of partitions (Aj)j≥i satisfies the property (4.19).

Lemma 4.5.
Let (T, d) be a metric space and (Aj)j≥i be an increasing sequence of parti-
tions of T such that each A ∈ Aj, j ≥ i, has an associated number `j(A) ∈ N
satisfying (4.19). Then there exists a probability measure µ on T such that,
given α, β > 0,

sup
t∈T

∑
j>i

r−βj α

√
log

1

µ(Aj(t))
≤ C

(
r−βi + sup

t∈T

∑
j>i

r−βj α

√
log `j(Aj(t))

)
,

(4.28)
with a constant C > 0 depending only on α, β and r.

Remark. Again, this is a slightly more general result than we need. We will
only use this lemma with β = 1 and α = 2. Here we will only show the proof
for the case that α ≥ 1. For the general proof see [T1].

Proof. Let j ≥ i and A ∈ Aj. We will construct numbers wj(A) inductively
as follows:
Set wi(T ) = 1. Assume that numbers wj−1(A) have been constructed for
A ∈ Aj−1. Let now B ∈ Aj such that B ⊂ A and define the number

wj(B) =
1

4`j(B)2
wj−1(A). (4.29)

From the property (4.19) of the partition we see that we can use the simple
inequality

∑
`≥1 `

−2 ≤ 2 to give, together with (4.29), the following estimate∑
B∈Aj
B⊂A

wj(B) =
1

4
wj−1(A)

∑
B∈Aj
B⊂A

1

`j(B)2
≤ 1

2
wj−1(A).
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From this we get, by induction over j, that∑
j>i

∑
A∈Aj

wj(A) ≤
∑
j>i

2i−jwi(T ) =
∑
j>i

2i−j
i≥1

≤ 1.

Hence, there exists a probability measure µ on T such that

∀j ≥ i ∀A ∈ Aj : µ(A) ≥ wj(A),

and in particular

log
1

µ(Aj(t))
≤ log

1

wj(Aj(t))
. (4.30)

Now let t ∈ T and j > i. Again by (4.29), we see that

wj(Aj(t)) =
1

4`j(Aj(t))2
wj−1(Aj−1(t)) = ... = 4i−j

j∏
k>i

`k(Ak(t))
−2,

from which we get, together with (4.30), that

log
1

µ(Aj(t))
≤ log

(
4i−j

j∏
k>i

`k(Ak(t))
−2

)
= (j − i) log 4 + 2

j∑
k>i

log `k(Ak(t))

Let now α ≥ 1. Then the basic inequality α
√
x+ y ≤ α

√
x+ α
√
y implies

α

√
log

1

µ(Aj(t))
≤ C α

√
j − i+

α
√

2

j∑
k>i

α
√

log `k(Ak(t)),

which we can rearrange by changing the order of summation as

∑
j>i

r−βj α

√
log

1

µ(Aj(t))

≤ C
∑
j>i

r−βj α
√
j − i+

α
√

2
∑
k>i

(∑
j≥k

r−βj

)
α
√

log `k(Ak(t)).

Since we can find constants such that
∑

j>i r
−βj α
√
j − i ≤ C(α, β, r) · r−βi

and α
√

2
∑

j≥k r
−βj ≤ C(α, β, r) · r−βk, we can further estimate the above

expression by

∑
j>i

r−βj α

√
log

1

µ(Aj(t))
≤ C(α, β, r)

(
r−βi +

∑
k>i

r−βk α
√

log `k(Ak(t))

)
.

Taking the supremum over all t ∈ T completes the proof.
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As an application of the majorizing measures theorem we introduce a
theorem which we will use in the next chapter to provide an approximation
result for convex bodies.
It states that for a process X and a sequence as in (4.15)-(4.18), E supt∈T Xt

is bounded by a constant only depending on r.

Remark. Note that so far we have shown everything for metric spaces, but in
fact all the theorems, except the example given in form of Lemma 4.2, also
hold in semimetric spaces.

Theorem 4.6.
Let (T, d) be a semimetric space and let (Xt)t∈T be a collection of centered
random variables with subgaussian tail estimate

P (|Xt −Xs| > a) ≤ exp

(
−c a2

d2(t, s)

)
, a > 0.

Let r > 1 and let k0 be a natural number such that the diam(T ) < r−k0 . Let
{ϕk}∞k=k0

be a sequence of functions from T to R+, uniformly bounded by a
constant depending only on r. Assume the existence of σ > 0 such that for
any k the functions ϕk satisfy for any s ∈ T and for all t1, ..., tN ∈ Bt−k(s)
with mutual distances at least r−k−1 one has

max
j=1,...,N

ϕk+2(tj) ≥ ϕk(s) + σr−k
√

logN . (4.31)

Then, we have
E sup

t∈T
Xt ≤ C(r)σ−1.

Proof. Since we know that diam(T ) < r−k0 , Lemma 4.4 gives us the existence
of an increasing sequence of partitions (Ak)k≥k0 of T and natural numbers
`k(A), for each A ∈ Aj.
This partition is such that each A ∈ Aj has diam(A) ≤ 2r−k and that, given
k ≥ k0, for any two sets A,B ∈ Aj+1 which are contained in the same element
of Aj, the numbers satisfy `j+1(A) 6= `j+1(B). Moreover, the lemma gives us
for each t ∈ T the estimate (note: β = 1)∑

k≥k0

r−k
√

log `k+1(Ak+1(t)) ≤ 4Sσ−1. (4.32)

Furthermore, we obtain from this

r−k0 ≤ r−k0 +
√

log `k0+1(Ak0+1(t))
∑
k>k0

r−k
√

log `k+1(Ak+1(t))

≤ 4Sσ−1
√

log `k0+1(Ak0+1(t)).
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Since there exists a p ∈ N such that `k0+1(Ak0+1(t) ≤ p for all t ∈ T , we have

r−k0 ≤ 4Sσ−1
√

log p. (4.33)

Using now Theorem 4.1 and Lemma 4.5 we obtain that

E sup
t∈T

Xt

Theorem 4.1

≤ C(r) sup
t∈T

∑
k>k0

r−k

√
log

1

µ(Ak(t))

Lemma 4.5

≤ C(r)

(
r−k0 + sup

t∈T

∑
k>k0

r−k
√

log `k(Ak(t))

)
(4.32),(4.33)

≤ C(r)σ−1.



Chapter 5

Contact points of convex bodies

In this chapter we will see an application of the majorizing measures theorem
in convex geometry. Namely, we will improve the bound for the number of
contact points of the famous theorem of John and derive that for each convex
body B in RM there exists another convex body K in RM arbitrarily “close”
to it, which has less than CM logM contact points with its maximal volume
ellipsoid for an absolute constant C > 0 (Theorem 5.3).

This goal will be achieved by deriving two crucial results along the way:
The first result, Lemma 5.7, which incorporates the majorizing measures
theorem, will be concerned with estimating the expectation of the supre-
mum of the absolute value of a weighted “Euclidean scalar product” over
the Euclidean unit ball of an n-dimensional Subspace W of RM . More pre-
cisely, each of the squares of the components of a vector in the sum defining
the Euclidean scalar product will be weighted with independent Rademacher
random variables. As we will see, this can be bounded from above by means
of the logarithm of the dimension of the space, i.e.,

√
logM , and by the

operator norm of the orthogonal projection onto the subspace W , consid-
ered with the `M1 -norm for the domain and the `M2 -norm for the image, i.e.,
‖PW : `M1 → `M2 ‖.

The second result, Theorem 5.8, which derives from the aforementioned one,
will show that an n×M -Matrix, n ≤M , with orthonormal rows and specif-
ically bounded columns, namely, their Euclidean norm should be bounded
by some t ≥

√
n/M , possesses submatrices which are “almost” orthogonal.

The size of theses almost orthogonal submatrices depends upon the quality
of approximation, t and n. The dependence on n is of the type n log n. This
result from [R1] is equivalent to our goal, as we will use this to explicitly
construct the convex body K from Theorem 5.3.

57
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Let us first introduce some preliminary notions. By a convex body K ⊆ RM

we mean a convex and compact set with nonempty interior. With KM we
denote the set of all M -dimensional convex bodies. Let K ⊆ L ⊆ RM be two
convex bodies, then we call a point x ∈ ∂K ∩ ∂L a contact point of the two
bodies.

Throughout this chapter we write e1, ..., eM for the canonical basis in RM .
By ‖ · ‖p, 1 ≤ p ≤ ∞ we refer to the `Mp -norms, where we use ‖ · ‖ := ‖ · ‖2 for
the `M2 -norm as shorthand notation. Moreover, we denote by BM

p the closed
unit ball in `Mp , for all 1 ≤ p ≤ ∞. We will also use the notation Bρ(w) for
the closed ρ-ball, ρ > 0, centered at w ∈ W in the (semi-)metric d on W ,
where W is a n-dimensional subspace of RM .
Furthermore, we will use an extended definition of the Banach-Mazur dis-
tance of convex bodies to determine how “similar” the shapes of two convex
bodies are. Note that the classical Banach-Mazur distance measures how
close two normed spaces are to being isometrically isomorphic, which can
be translated to symmetric convex bodies, since those are the unit balls of
normed spaces. From this translation one can go on to extend the definition
to non-symmetric convex bodies. We have the following definitions:

Figure 5.1: Illustration of the Banach-Mazu distance for two convex bodies
K and L and vector u and operator T for which the constant c is attained.
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Definition 5.1. (Banach-Mazur distance)
For two convex bodies K,L ∈ KM we define the Banach-Mazur distance
as

d(K,L) := inf{c > 0|K + u ⊂ TL ⊂ c(K + u)},

where the infimum is taken over all vectors u ∈ RM and all invertible opera-
tors T .

Definition 5.2. (John ellipsoid) Let K ∈ KM . The John ellipsoid of K is
the maximum volume ellipsoid contained in K.

The goal of this chapter is to show the following theorem, which is due
to M. Rudelson. We will follow his approach from [R1] and [R2]:

Theorem 5.3.
Let B ∈ KM and let ε > 0. Then there exists K ∈ KM such that d(K,B) ≤
1 + ε and the number of contact points of K with its John ellipsoid is less
then

m(M, ε) = C(ε)M logM .

Furthermore, if the John ellipsoid of K is BM
2 , then the identity operator

idM in RM has the decomposition

idM =
m∑
i=1

aiui ⊗ ui, (5.1)

where m ≤ m(M, ε), u1, ..., um are the only contact points of K with BM
2 ,

m∑
i=1

aiui = 0 (5.2)

and, for every i = 1, ...,m, m
M
ai ∈ [1− ε, 1 + ε].

This is an astonishing result, since it means that for any convex body B
there can be found another convex body K with geometric distorsion less
than 1 + ε such that the number of the contact points of K with its John
ellipsoid is bounded by a constant depending only on ε and growing at most
like M logM with the dimension M .

Remark. This result has already been improved. Namely, Srivastava, Spiel-
man and Batson showed in [S-S-B] that this theorem holds with m(M, ε) ≤
C(ε)M for symmetric convex bodies. Moreover, they showed that for any
convex body K there exists a convex body L such that d(K,L) ≤ 2.24 and
the number of contact points is bounded by m(M, ε) ≤ C(ε)M .
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We will start our investigation by introducing a few lemmas, which will
help us to obtain an intermediate result on almost orthogonal submatrices
of orthogonal matrices on RM (see Theorem 5.8). In [R2], Mark Rudelson
states the equivalence of Theorem 5.8 and Theorem 5.3. We will only show
that Theorem 5.8 implies Theorem 5.3.

Definition 5.4. (ε-Entropy)
Let (X, d) be a (semi-)metric space and let A, B be subsets of X. By
N(B, d, ε), the so-called ε-entropy, we denote the number of closed ε-balls
needed to cover B in the (semi-)metric d.
Additionally, we denote by N(A,B) the translates of the set B by elements
of the set A to cover A.

In the following parts of this chapter we will make use of orthogonal
projections. For the definition, see Definition A.39 in the appendix.

Lemma 5.5.
Let W be an n-dimensional subspace of RM , let PW be the orthogonal pro-
jection onto W . Let a1, ..., aM ∈ R \ {0} and let, for all x ∈ RM , ‖·‖E be the
norm defined by

‖x‖E :=

(
M∑
i=1

x2(i)a2
i

)1/2

.

Then, for all ε > 0,

(i) ε
√

logN(BM
2 ∩W, ‖·‖∞ , ε) ≤ C

∥∥PW : `M1 → `M2
∥∥√logM , and

(ii) ε
√

logN(BM
2 ∩W, ‖·‖E , ε) ≤ C

∥∥PW : `M1 → `M2
∥∥(∑M

i=1 a
2
i

)1/2

.

Remark. We write the norm ‖ · ‖E with an E to denote the fact that its unit
ball, also denoted E , is an ellipsoid, i.e., E := {x ∈ RM :

∑M
i=1 x

2(i)a2
i ≤ 1}

with semi-axis 1/|ai|, i = 1, ...,M . This norm is particularly useful when
considering a John ellipsoid of a convex body.

Proof. Let g be a standard Gaussian random vector in RM . Then PWg is a
standard Gaussian vector in W (Appendix, Lemma A.40).
For a standard Gaussian vector we can apply the dual Sudakov minoration
(see Appendix, Theorem A.41 and subsequent remarks) which gives for (i)



CHAPTER 5. CONTACT POINTS OF CONVEX BODIES 61

that

sup
ε>0

ε
√

logN(BM
2 ∩W, ‖·‖∞ , ε) = sup

ε>0
ε
√

logN(BM
2 ∩W, ε(BM

∞ ∩W ))

≤ CE sup
t∈(BM∞∩W )◦

∣∣∣∣∣
n∑
i=1

(PWg)iti

∣∣∣∣∣
= CE sup

t∈(BM∞∩W )◦
|〈PWg, t〉|

= CE sup
t∈PW (BM1 )

|〈PWg, t〉| .

The last equality follow from the fact that (BM
∞ ∩ W )◦ = PW (BM

1 ). (Ap-
pendix, Theorem A.41).
Since for every t ∈ PW (BM

1 ) there exists an s ∈ BM
1 such that PW (s) = t and

the orthogonal projection PW is self-adjoint and idempotent, i.e., P 2
W = PW ,

we get

CE sup
t∈PW (BM1 )

|〈PWg, t〉| = CE sup
s∈BM1

|〈PWg, PW s〉|

= CE sup
s∈BM1

|〈PWPWg, s〉|

= CE sup
s∈BM1

|〈PWg, s〉|

Now we use the extreme point estimate

sup
s∈BM1

|〈PWg, s〉| = sup
s∈BM1

∣∣∣∣∣
M∑
i=1

(PWg)(i)si

∣∣∣∣∣
≤ sup

s∈BM1

M∑
i=1

|(PWg)(i)||si|

≤ max
j=1,...,M

|(PWg)(j)| sup
s∈BM1

M∑
i=1

|si|

= max
j=1,...,M

|〈PWg, ej〉| sup
s∈BM1

‖s‖1

= max
j=1,...,M

|〈PWg, ej〉|

to show that

CE sup
s∈BM1

|〈PWg, s〉| ≤ CE max
j=1,...,M

|〈PWg, ej〉| = CE max
j=1,...,M

|〈g, PW ej〉| .
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From Lemma A.44, in the appendix, we have, for all k = 1, ...,M , that

〈g, PW ej〉 =
M∑
i=1

(PW ej)(i)gi
D
=

(
M∑
i=1

(PW ej)(i)
2

)1/2

gk = ‖PW ej‖ · gk,

which gives us that

C · E max
j=1,...,M

|〈g, PW ej〉| = C · E max
j=1,...,M

|‖PW ej‖ · gk|

≤ C max
j=1,...,M

‖PW ej‖ · E max
k=1,...,M

|gk|.

To estimate this further, note that for independent folded standard nor-
mal distributions |Zi|, we have Emaxi=1,...,M |Zi| ≤ C

√
logM (Appendix,

Lemma A.43). Using this, we obtain

C max
j=1,...,M

‖PW ej‖ · E max
k=1,...M

|gk| ≤ C max
j=1,...,M

‖PW ej‖
√

logM

≤ C
∥∥PW : `M1 → `M2

∥∥√logM .

Since this chain of inequality holds for the supremum over all ε > 0, this
holds for any ε > 0 and we have shown part (i) of this lemma.

Analogously, we get for (ii) that

sup
ε>0

ε
√

logN(BM
2 ∩W, ‖·‖E , ε) = sup

ε>0
ε
√

logN(BM
2 ∩W, ε(BM

E ∩W ))

≤ CE sup
t∈(BME ∩W)

◦
|〈PWg, t〉| = CE sup

t∈PW ((BME )
◦
)
|〈PWg, t〉|

= CE sup
s∈(BME )

◦
|〈PWg, PW s〉| = CE sup

s∈(BME )
◦
|〈PWg, s〉|

= CE ‖PWg‖E ≤ C
(
E ‖PWg‖2

E
)1/2

= C

(
E

M∑
i=1

〈PWg, ei〉2a2
i

)1/2

= C

(
E

M∑
i=1

〈g, PW ei〉2a2
i

)1/2

.

As above we use the consequence from Lemma A.44, for all k = 1, ...,M ,
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that 〈g, PW ei〉
D
= ‖PW ei‖ · gk to show that

C

(
E

M∑
i=1

〈g, PW ei〉2a2
i

)1/2

≤ C

(
E

M∑
i=1

‖PW ei‖2a2
i g

2
k

)1/2

= C

(
M∑
i=1

‖PW ei‖2a2
iEg2

k

)1/2

Eg2k=1

≤ C

(
M∑
i=1

‖PW ei‖2a2
i

)1/2

≤ C max
j=1,...,M

‖PW ej‖

(
M∑
i=1

a2
i

)1/2

≤ C
∥∥PW : `M1 → `M2

∥∥( M∑
i=1

a2
i

)1/2

.

Lemma 5.6.
Let W be an n-dimensional subspace of RM . w ∈ W and ρ > 0. Consider
the closed ρ-ball Bρ(w) in the semimetric

d(v, w) :=

(
M∑
i=1

(v(i)− w(i))2(v(i)2 + w(i)2)

)1/2

.

Then, we have
convBρ(w) ⊂ B4ρ(w).

Proof. First, we check that d is a semimetric.
Let v, w ∈ W . From the definition of d we see that d(v, w) ≥ 0 and that
d(v, w) = 0 if and only if v = w. Also the symmetry of d follows immediately
from the symmetries of (v(i)− w(i))2 and v(i)2 + w(i)2.
On the other hand we see for a, b ∈ R that the inequality

(a− b)2(a2 + b2) = a4 + b4 + 2a2b2 − 2a3b− 2ab3 ≤ a4 + b4

does not hold true in general. Hence, the triangle inequality does not hold
and d is indeed a semimetric.

Let now v ∈ Bρ(w). Obviously, we have(
M∑
i=1

(v(i)− w(i))2w2(i)

)1/2

≤ d(v, w) ≤ ρ.
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Furthermore, from the inequality a2 + b2 − 2ab ≤ 2(a2 + b2), for all a, b ∈ R,
and the definition of the semimetric d we easily see(

M∑
i=1

(v(i)− w(i))4

)1/2

=

(
M∑
i=1

(v(i)− w(i))2
(
v2(i) + w2(i)− 2v(i)w(i)

))1/2

≤

(
2

M∑
i=1

(v(i)− w(i))2
(
v2(i) + w2(i)

))1/2

=
√

2d(v, w) ≤
√

2ρ.

These inequalities also hold for any v ∈ convBρ(w). To see this, let n ∈ N,
α1, ..., αn ∈ [0, 1] with

∑n
i=1 αi = 1 and v1, ..., vn ∈ Bρ(w), such that

v =
n∑
i=1

αivi.

From the convexity of the function f(x) := x2p on R with p ∈ N, i.e.,
f(
∑
αixi) ≤

∑
αif(xi) for any finite convex combination of real numbers

xi, we can derive(
n∑
i=1

αivi(j)− w(j)

)2p

=

(
n∑
i=1

αivi(j)−
n∑
i=1

αiw(j)

)2p

=

(
n∑
i=1

αi(vi(j)− w(j))

)2p

convex.

≤
n∑
i=1

αi(vi(j)− w(j))2p.

We consider the case p = 2 to get(
M∑
i=1

(v(i)− w(i))4

)1/2

=

 M∑
i=1

(
n∑
j=1

αjvj(i)− w(i)

)4
1/2

≤

(
n∑
j=1

αj

(
M∑
i=1

(vj(i)− w(i))4

))1/2

≤

(
2ρ2

n∑
j=1

αj

)
=
√

2ρ
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and analogously, from the case p = 1,(
M∑
i=1

(v(i)− w(i))2w2(i)

)1/2

≤ ρ.

Finally, we get from the elementary inequality a2 + b2 ≤ 4a2 + 2(a− b)2, for
all a, b ∈ R, that

d(v, w) =

(
M∑
i=1

(v(i)− w(i))2(v(i)2 + w(i)2)

)1/2

≤

(
M∑
i=1

(v(i)− w(i))2(4w2(i) + 2(v(i)− w(i))2)

)1/2

≤ 2

(
M∑
i=1

(v(i)− w(i))2w2
i (i)

)1/2

+
√

2

(
M∑
i=1

(v(i)− w(i))4

)1/2

≤ 4ρ,

for every v ∈ convBρ(w).

Lemma 5.7.
Let W be an n-dimensional subspace of RM . Let ε1, ..., εM be independent
random variables having values in {−1, 1} with probability 1/2 each. Let
PW : RM → RM be the orthogonal projection onto W . Then

E sup
w∈W∩BM2

∣∣∣∣∣
M∑
i=1

εiw
2(i)

∣∣∣∣∣ ≤ C
√

logM ·
∥∥PW : `M1 → `M2

∥∥ .

Proof. Denote W1 = BM
2 ∩W . We have to estimate the expectation of the

supremum over all w ∈ W1 of a random process

Vw =
M∑
i=1

εiw
2(i).

Let w, w̄ ∈ W1. Then we see that Vw − Vw̄ is a symmetric random variable,
since Vw and Vw̄ are symmetric. Consequently, we get

P(Vw − Vw̄ > a) = P(Vw̄ − Vw > a) =
1

2
· P(|Vw − Vw̄| > a).
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From the classical subgaussian tail estimate for Rademacher random vari-
ables (see Appendix C, Theorem A.42) we see that the process Vw has a
subgaussian tail estimate

P(Vw − Vw̄ > a) =
1

2
P(|Vw − Vw̄| > a) ≤ exp

(
−c a2

d̃2(w, w̄)

)
,

with the metric

d̃2(w, w̄) =

(
M∑
i=1

(
w2(i)− w̄2(i)

)2

)1/2

.

We estimate the metric d̃ by the simpler to control semimetric defined in
Lemma 5.6:

1√
2
d̃(w, w̄) ≤ d(w, w̄) =

(
M∑
i=1

(w(i)− w̄(i))2(w2(i) + w̄2(i))

)1/2

,

which follows from the simple inequality (w(i) + w̄(i))2 ≤ 2(w2(i) + w̄2(i)),
for all i = 1, ...,M .
We already saw in the proof of Lemma 5.6 that the triangle inequality does
not hold for d. However, a generalized triangle inequality for d can be derived
from

d(w, w̄) =

(
M∑
i=1

1

2
(w(i)− w̄(i))2

(
(w(i) + w̄(i))2 + (w(i)− w̄(i))2

))1/2

≤ 1√
2

(
d̃(w, w̄) + ‖w − w̄‖2

`M4

)
≤
√

2d̃(w, w̄).

Namely, for all u,w, w̄ ∈ W we have

d(w, w̄) ≤
√

2d̃(w, w̄) ≤
√

2(d̃(w, u) + d̃(u, w̄)) ≤ 2(d(w, u) + d(u, w̄)). (5.3)

Note that balls in the semimetric d are not convex. This problem will later
be overcome by Lemma 5.6.

Let now r ∈ N to be chosen later. Let k0 and k1 be the largest natural
numbers such that

r−k0 ≥ diam(W1, ‖ · ‖∞) =: Q and r−k1 ≥ Q√
n

.
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This is equivalent to −k0 ≥ (log r)−1Q and k1 ≤ −(logQ− 1
2

log n)(log r)−1,
from which

k1 − k0 ≤ (2 log r)−1 log n (5.4)

follows. Additionally, define functions ϕk : W1 → R by

ϕk(w) =

min{‖u‖2 | u ∈ convB2r−k(w)}+ k−k0
logM

, if k0 ≤ k ≤ k1

1 + 1
2 log r

+
∑k

`=k1
r−l
√
n log(1+2

√
2rl)

Q
√

logM
, if k > k1.

We see, for any w ∈ W1, that the sequence {ϕk(w)}∞k=k0
is nonnegative and

nondecreasing. Moreover it is bounded by an absolute constant depending
only on r, since for k ≤ k1 we have by (5.4)

ϕk(w) ≤ 1 +
1

2 log r
· log n

logM
, (5.5)

and for k > k1 we have

ϕk(w) ≤ 1 +
1

2 log r
+
∞∑
`=k1

r−l

√
n log(1 + 2

√
2rl)

Q
√

logM

≤ 1 +
1

2 log r
+ c(r)r−k1 ·

√
n

Q
·

√
log(1 + 2

√
2rk1)

√
logM

≤ C(r),

where the second to last inequality follows from the fact that this infinite
series is a geometric series.

In order to prove this lemma we have to show that the condition (4.6) holds
for {ϕk(w)}∞k=k0

with σ = (c ·Q ·
√

logM)−1.
So, let x ∈ W1 and suppose that the points x1, ..., xN ∈ Br−k(x) satisfy
d(xj, x`) ≥ 6r−k−1 for all j 6= `.

For k ≥ k1 − 1 condition (4.6) follows from the simple volume estimate

N ≤ N
(
W1, d, 6r

−k−1
)
≤ N

(
W1, d, r

−k−1
)

≤ N

(
W1, ‖ · ‖∞,

r−k−1

√
2

)
Bn∞⊇Bn2
≤ N

(
W1, ‖ · ‖,

r−k−1

√
2

)
≤

(
1 +

2
√

2

r−k−1

)n

,
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where the last inequality follows for sufficiently large r, which, as we will see
in the case k0 ≤ k < k1 − 1, will surely be fulfilled because we have to make
the choice r ≥ 16.
To see that this volume estimate implies (4.6), we note first that by the
independence of ϕk+2(xj) from xj, for all j = 1, ..., N , we have

max
j=1,...,N

ϕk+2(xj) = 1 +
1

2 log r
+

k+2∑
`=k1

r−l

√
n log(1 + 2

√
2rl)

Q
√

logM
.

In the case that k1 + 2 ≥ k ≥ k1 − 1 we get by (5.5) that

max
j=1,...,N

ϕk+2(xj)

≥ 1 +
1

2 log r

log n

logM
+ (Q

√
logM)−1r−k

k+2∑
`=k1

rk−l
√
n log(1 + 2

√
2rl)

≥ ϕk(x) + (Q
√

logM)−1r−k
√

logN
k+2∑
`=k1

rk−l.

For the case k > k1 + 2 we have

max
j=1,...,N

ϕk+2(xj)

= 1 +
1

2 log r
+

k∑
`=k1

r−l

√
n log(1 + 2

√
2rl)

Q
√

logM
+

k+2∑
`=k+1

r−l

√
n log(1 + 2

√
2rl)

Q
√

logM

= ϕk(x) +
k+2∑
`=k+1

r−l

√
n log(1 + 2

√
2rl)

Q
√

logM

≥ ϕk(x) + (Q
√

logM)−1r−k
√

logN
k+2∑
`=k+1

rk−l.

Choosing now c−1 :=
∑k+2

`=k+1 r
k−l we see that

max
j=1,...,N

ϕk+2(xj) ≥ ϕk(x) + (cQ
√

logM)−1r−k
√

logN

and condition (4.6) holds for k ≥ k1 − 1.
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Suppose now that k0 ≤ k < k1 − 1. For j = 1, ..., N , denote by zj the
point of convB3r−k−2(xj) for which the minimum of ‖z‖ is attained, and de-
note by u the similar point of convB3r−k(x). By (5.3) and Lemma 5.6 we
have for all j 6= `

6r−k−1 ≤ d(xj, x`) ≤ 2(d(xj, zj) + d(zj, x`))

≤ 2(d(xj, zj) + 2(d(zj, z`) + d(z`, x`)))

≤ 4 · (d(xj, zj) + d(zj, z`) + d(z`, x`))

≤ 4 ·
(
16 · r−k−2 + d(zj, z`)

)
,

so, d(zj, z`) ≥ 1
2
r−k−1 if r ≥ 16.

Under the same assumptions on r we also have

d(zj, x) ≤ 2 (d(zj, xj) + d(xj, x))

≤ 2(8r−k−2 + r−k)

≤
(

1

16 · 256
+ 2

)
r−k ≤ 3r−k.

Denote θ := maxj=1,...,N ‖zj‖2 − ‖u‖. We have to prove that

r−k ·(c·Q·
√

logM)−1 ·
√

logN ≤ max
j=1,...,N

ϕk+2(xj)−ϕk(x) = θ+
2

logM
. (5.6)

From
zj+u

2
∈ convB3r−k(x) we know, ‖ zj+u

2
‖ ≥ ‖u‖. Additionally, we have

by definition of u and zj that ‖u‖ ≤ ‖zj‖ for all j = 1, ..., N . Using these,
together with the parallelogram law ‖zj +u‖2 + ‖zj −u‖2 = 2(‖zj‖2 + ‖u‖2),
we get ∣∣∣∣∣∣∣∣zj − u2

∣∣∣∣∣∣∣∣2 =
1

2
‖zj‖2 +

1

2
‖u‖2 −

∣∣∣∣∣∣∣∣zj + u

2

∣∣∣∣∣∣∣∣2
≤ ‖zj‖2 −

∣∣∣∣∣∣∣∣zj + u

2

∣∣∣∣∣∣∣∣2
≤ ‖zj‖2 − ‖u‖2

≤ max
j=1,...,N

‖zj‖2 − ‖u‖2

= θ,

and, therefore,
‖zj − u‖ ≤ 2

√
θ. (5.7)

Thus, z1, ..., zN is contained in u + 2
√
θBM

2 ∩W . From d(xj, xl) ≥ 6r−k−1,

for all j 6= l, we see that the 1
2
r−k−1-entropy of the set K = u+ 2

√
θBM

2 ∩W
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in the quasimetric d, namely, the number of 1
2
r−k−1-balls in the quasimetric

d needed to cover K, gives us an upper bound for N .
To estimate this entropy we partition the set K into S disjoint subsets having
diameter less than 1

16
r−k−1θ−1/2 in the `∞ metric. By part (i) of Lemma 5.5

we may assume that

1

16
r−k−1θ−1/2

√
logS ≤ c ·Q ·

√
θ ·
√

logM . (5.8)

In the first case, S ≥
√
N , we can rewrite this as

√
2
√

logS ≥
√

logN and
rearrange (5.8) in the form

1

16
r−k−1(c ·Q ·

√
logM)−1

√
2
√

logS ≤ θ.

So we get (5.6), since

1

16
√

2
r−k−1·(c·Q·

√
logM)−1·

√
logN ≤ 1

16
r−k−1·(c·Q·

√
logM)−1·

√
logS ≤ θ.

Pulling 1
16
√

2
r−1 into the constant c we have

r−k · (c ·Q ·
√

logM)−1 ·
√

logN ≤ θ ≤ θ +
2

logM
,

and, therefore, shown (5.6) for this case.

Suppose now, as second case, that S ≤
√
N . We see that there exists an

element of the partition containing at least
√
N points zj. Let J ⊂ {1, ..., N}

be the set of the indices of these points. We have

‖zj − z`‖∞ ≤
1

16
r−k−1θ−1/2 (5.9)

for all j, ` ∈ J , j 6= `.
Using the estimate d(zj, z`) ≥ 1

2
r−k−1 from before, and temporarily using the

short hand notations Zj := {i : |zj(i)| ≥ 2|u(i)|} and Z` := {i : |z`(i)| ≥
2|u(i)|}, we have

(
1

2
r−k−1

)2

≤
M∑
i=1

(zj(i)− z`(i))2 ·
(
z2
j (i) + z2

` (i)
)

≤
M∑
i=1

(zj(i)− z`(i))2 ·
(
8u2(i) + z2

j (i)1Zj(i) + z2
` (i)1Z`}(i)

)
.

(5.10)



CHAPTER 5. CONTACT POINTS OF CONVEX BODIES 71

Then, (5.7) implies

M∑
i=1

z2
j (i)1Zj(i) ≤ 4

M∑
i=1

(zj(i)− u(i))2 ≤ 16 · θ. (5.11)

Combining (5.9) and (5.11) we get that (5.10) is bounded by(
1

2
r−k−1

)2

≤
M∑
i=1

(zj(i)− z`(i))2 ·
(
8u2(i) + z2

j (i)1Zj(i) + z2
` (i)1Z`(i)

)
≤ 8

M∑
i=1

(zj(i)− z`(i))2 u2(i) + ‖zj − zl‖2
∞ ·

(
M∑
i=1

z2
j (i)1Zj(i) +

M∑
i=1

z2
` (i)1Z`(i)

)

≤ 8
M∑
i=1

(zj(i)− z`(i))2 u2(i) +

(
θ−1/2

16
r−k−1

)2

· 2 · 16θ

Thus, by rearranging this inequality, we have for all j, ` ∈ J , j 6= `(
M∑
i=1

(zj(i)− z`(i))2 · u2(i)

)1/2

≥ 1

8
r−k−1.

Then, part (ii) of Lemma 5.5 implies

1

8
r−k−1

√
log |J | ≤ c ·

√
θ ·Q ·

(
M∑
i=1

u2(i)

)1/2

≤ c ·
√
θ ·Q.

Since, for all θ > 0,

2
√
θ ≤

√
logM · θ +

1√
logM

holds, and we know from |J | ≥
√
N that

√
log |J | ≥

√
logN/

√
2 ≥
√

logN/2,
we get

1

16
r−k−1

√
logN ≤ 1

8
r−k−1

√
log |J | ≤ c ·Q ·

√
logM ·

(
θ +

1

logM

)
.

Pulling again 1
16
r−1 into the constant c and rearranging this inequality, we

obtain

r−k(c ·Q ·
√

logM)−1
√

logN ≤ θ +
1

logM
≤ θ +

2

logM
.
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Therefore, we have also shown (5.6) for the second case.
Altogether, we have proven that condition (4.6) holds for {ϕk(w)}∞k=k0

with
σ = (c ·Q ·

√
logM)−1 and that we can finally apply Theorem 4.6 to get

E sup
w∈W∩BM2

∣∣∣∣∣
M∑
i=1

εiw
2(i)

∣∣∣∣∣ ≤ C
√

logM
∥∥PW : `M1 → `M2

∥∥ .

The next theorem was proposed by B. Kashin and L. Tsafriri [Kas-Tz].
As already mentioned, this theorem will imply Theorem 5.3.

Theorem 5.8.
Let A = (ai,j) be an n×M matrix with orthonormal rows and let t ≥ 1. Let
the inequality √

M

n

(
n∑
i=1

a2
i,j

)1/2

≤ t

hold for all j = 1, ...,M .
Then, for every ε > 0, there exists a set I ⊂ {1, ...,M} such that

|I| ≤ C
t2

ε2
n log

nt2

ε2
(5.12)

and for all x ∈ Rn

(1− ε) · ‖x‖ ≤

√
M

|I|
·
∥∥RIA

Tx
∥∥ ≤ (1 + ε) · ‖x‖ , (5.13)

where RI : RM → RM denotes the orthogonal projection onto the space span
{ei : i ∈ I}.

Proof. Let M ≥ C t2

ε2
n log n for some absolute constant C. Let A = (ai,j) be

an n×M matrix for which√
M

n

(
n∑
i=1

a2
i,j

)1/2

≤ t

holds for all j = 1, ...,M . Define a sequence {εi}Mi=1 of Rademacher random
variables and set I1 = {i : εi = 1}. From 0 ≤ |I1| ≤M we can deduce that

P
(
|I1| ≤

M

2

)
≥ 1

2
and P

(
M

2

(
1− 1√

M

)
≤ |I1|

)
≥ P

(
M

2
≤ |I1|

)
≥ 1

2
,
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which gives us with probability at least 1/4 that

M

2

(
1− 1√

M

)
≤ |I1| ≤

M

2
. (5.14)

Let w(1), ..., w(M) be the coordinates of a vector w ∈ W := ATRn. Note
that from the fact that W ∩ BM

2 is the euclidean unit ball in W , we know
that sup

w∈W∩BM2

‖w‖ = sup
x∈Bn2

‖x‖, from which follows that

sup
x∈Bn2

∣∣2‖RI1A
Tx‖2 − ‖x‖2

∣∣ = sup
w∈W∩BM2

∣∣2‖RI1w‖2 − ‖w‖2
∣∣

= sup
w∈W∩BM2

∣∣∣∣∣2∑
i∈I1

w2(i)−
M∑
i=1

w2(i)

∣∣∣∣∣ = sup
w∈W∩BM2

∣∣∣∣∣
M∑
i=1

εiw
2(i)

∣∣∣∣∣ .
Note that wi := AT ei, i = 1, ..., n, is a basis of W , since the columns of AT are

orthonormal. From this, together with the inequality
√

M
n

(∑n
i=1 a

2
i,j

)1/2 ≤ t,

we get

‖PW : `M1 → `M2 ‖ = sup
x∈BM1

‖PWx‖ = sup
x∈BM1

‖
n∑
i=1

〈x,wi〉wi‖.

Since the supremum is attained in an extreme point of BM
1 , there exists a

j ∈ {1, ..., n} such that

sup
x∈BM1

‖
n∑
i=1

〈x,wi〉wi‖ = ‖
n∑
i=1

aj,iwi‖

= ‖AT (ai,j)
n
i=1‖ ≤ ‖AT‖2 · ‖(ai,j)ni=1‖`n2

= ‖(ai,j)ni=1‖`n2 =

(
n∑
i=1

a2
i,j

)1/2

≤ t

√
n

M
.

In the last, line we used ‖AT‖2 =
√
λmax(AAT ) =

√
λmax(In) = 1.

By Markov’s inequality we have

P

(
sup

w∈W∩BM2

∣∣∣∣∣
M∑
i=1

εiw
2(i)

∣∣∣∣∣ ≥ 4E sup
w∈W∩BM2

∣∣∣∣∣
M∑
i=1

εiw
2(i)

∣∣∣∣∣
)
≤ 1

4
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and consequently, with probability at least 3/4, that

sup
w∈W∩BM2

∣∣∣∣∣
M∑
i=1

εiw
2(i)

∣∣∣∣∣ ≤ 4E sup
w∈W∩BM2

∣∣∣∣∣
M∑
i=1

εiw
2(i)

∣∣∣∣∣ .
From this, together with Lemma 5.7, we have with probability greater than
3/4.

sup
x∈Bn2

∣∣2‖RI1A
Tx‖2 − ‖x‖2

∣∣ = sup
w∈W∩BM2

∣∣∣∣∣
M∑
i=1

εiw
2(i)

∣∣∣∣∣ ≤ Ct ·
√

n

M
·
√

logM

(5.15)
Hence, there exists a set I1 ⊂ {1, ...,M} satisfying (5.14) and (5.15).

Repeating these steps inductively, we obtain a decreasing sequence of sets
{1, ...,M} =: I0 ⊃ I1 ⊃ ... ⊃ Is such that with probability greater 1/4,
analogously as in (5.14),

|Ik|
2

(
1− 1√

|Ik|

)
≤ |Ik+1| ≤

|Ik|
2

. (5.16)

Analogously, as in (5.15), we get by Markov’s inequality,

P

(
sup

w∈Wk∩Bm2

∣∣∣∣∣
m∑
i=1

εiw
2(i)

∣∣∣∣∣ ≥ 4E sup
w∈Wk∩Bm2

∣∣∣∣∣
m∑
i=1

εiw
2(i)

∣∣∣∣∣
)
≤ 1

4
,

that with probability at least 3/4

sup
w∈Wk∩Bm2

∣∣∣∣∣
m∑
i=1

εiw
2(i)

∣∣∣∣∣ ≤ 4E sup
w∈Wk∩Bm2

∣∣∣∣∣
m∑
i=1

εiw
2(i)

∣∣∣∣∣ .
Furthermore, we have at each step of induction

1

2
· ‖x‖`n2 ≤ 2

k−1
2 · ‖RIk−1

ATx‖ ≤ 3

2
· ‖x‖`n2 . (5.17)

W.l.o.g. we can assume that Ik−1 = {1, ...,m} for some m < M . Let
Wk = RIk−1

ATRn ⊂ Rm and let PWk
: Rm → Rm be the orthogonal projection

onto Wk. Then, by (5.17),

2
k−1
2 RIk−1

ATBn
2 ⊂

3

2
Bm

2 ∩Wk
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holds and we have for a random set Ik ⊂ Ik−1,

E sup
x∈Bn2

(
2k‖RIkA

Tx‖2 − 2k−1‖RIk−1
ATx‖2

)
≤ E sup

w∈Wk∩ 3
2
Bm2

∣∣∣∣∣∣2
∑
i∈Ik

w2
i −

∑
i∈Ik−1

w2
i

∣∣∣∣∣∣
= E sup

w∈Wk∩ 3
2
Bm2

∣∣∣∣∣
m∑
i=1

εiw
2
i

∣∣∣∣∣
≤ 9

4
· E sup

w∈Wk∩Bm2

∣∣∣∣∣
m∑
i=1

εiw
2
i

∣∣∣∣∣ .
We also need to estimate ‖PWk

: `m1 → `m2 ‖, which is possible by (5.17) and
gives

‖PWk
: `m1 → `m2 ‖ ≤ 2 ·

∣∣∣∣∣∣∣∣(2
k−1
2 RIk−1

AT
)T

: `M1 → `n2

∣∣∣∣∣∣∣∣ ≤ 2
k+1
2 · t ·

√
n

M
.

Again, by Lemma 5.7 we get with probability greater than 3/4

sup
x∈Bn2

(
2k‖RIkA

Tx‖2 − 2k−1‖RIk−1
ATx‖2

)
≤ Ct

√
n

M/2k
·
√

log |Ik−1|.

Note that we have absorbed a factor
√

2 from ‖PWk
: `m1 → `m2 ‖ ≤ 2

k+1
2 ·t·

√
n
M

into the constant C.

From these inequalities and (5.15), we obtain by the triangle inequality, to-
gether with |Ik| ≤M/2k, that

sup
x∈Bn2

∣∣2s‖RIsA
Tx‖2 − ‖x‖2

∣∣
≤ sup

x∈Bn2

∣∣2‖RI1A
Tx‖2 − ‖x‖2

∣∣+
s∑

k=2

sup
x∈Bn2

∣∣2k‖RIkA
Tx‖2 − 2k−1‖RIk−1

ATx‖2
∣∣

≤ Ct

(√
n

M
·
√

logM +
s∑

k=2

√
n

M/2k
·
√

log |Ik−1|

)

≤ sCt ·
√

n

M/2s
·
√

log |Is| ≤ Ct ·
√

n

M/2s
·
√

log
M

2s
. (5.18)
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We break this procedure if the last expression of the above chain of inequal-
ities is smaller than ε/2 and get in this case that

c · t
2

ε2
· n · log

nt2

ε2
≤ M

2s
≤ C · t

2

ε2
· n · log

nt2

ε2
. (5.19)

Indeed, under the assumption that log M
2s
≥ 1 we have

log
nt2

ε2
≤ log

Mt2

ε2
≤ log

M

2s
+ log

2st2

ε2
≤ C log

M

2s
,

which gives us, together with

Ct ·
√

n

M/2s
·
√

log
M

2s
≤ ε

2
⇐⇒ C log

nt2

ε2
log

M

2s
≤ M

2s
,

the lower bound of (5.19).
Assume now that there exists no such upper bound as in (5.19). Note that
we still can find a bound with a constant C(n,M) depending on n and M .
Assume that log nt2

ε2
≥ 1, giving us

log

(
c
nt2

ε2
log

nt2

ε2

)
≥ log c+ log

nt2

ε2
≥ c log

nt2

ε2
.

Then we have

ε

2
≥ Ct ·

√
n

M/2s
·
√

log
M

2s

≥ Ct ·
√

n

C(n,M) · t2
ε2
· n · log nt2

ε2

·
√
c log

nt2

ε2

≥ C(n,M)ε.

This tells us that 1
2
≥ C(n,M), contradicting our assumption that we can’t

find an upper bound of (5.19) independent of n and M .

With (5.14) and (5.16) we can deduce that

M

2s

s−1∏
k=0

(
1− 1√

|Is|

)
≤ |Is| ≤

M

2s
.
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This term can be estimated from below by the Weierstrass product inequality,
i.e.,

∏n
i=1(1− ui) ≥ 1−

∑n
i=1 ui for ui ∈ [0, 1], i = 1, ..., n, yielding

s−1∏
k=0

(
1− 1√

|Is|

)
≥ 1−

s−1∑
k=0

1√
|Ik|

|Ik−1|≤|Ik|/2
≥ 1−

s−1∑
k=0

1√
2s−k|Is|

= 1− 1

|Is|

s−1∑
k=0

1√
2s−k

= 1− 1√
|Is|

(1 +
√

2)(
√

2s − 1)√
2s

≥ 1− 4√
|Is|

and, subsequently,

M

2s

(
1− 4√

|Is|

)
≤ |Is| ≤

M

2s
, (5.20)

which tells us, together with (5.19), that the set |Is| fulfills (5.12).
From the lower bound, together with (5.19) and the fact that nt2/ε2 ≥ c · n,
one sees that

|Is| ≥ c · t
2

ε2
· n · log

nt2

ε2
·

(
1− 4√

|Is|

)
≥ c · t

2

ε2
· n · log n.

Hence, we can reformulate (5.20) as

M

|Is|

(
1−

(
c · t

2

ε2
· n · log n

)−1/2
)
≤ 2s ≤ M

|Is|
.

Thus, from (5.18) we have

sup
x∈Bn2

∣∣∣∣M|Is|‖RIsA
Tx‖2 − ‖x‖2

∣∣∣∣ ≤ ε.

We go on now by using this theorem to show that for each convex body,
with the euclidean unit ball as its John ellipsoid, there exists a decomposition
of the identity operator in terms of the contact points of these two bodies.
This is in general not a John’s decomposition, but the number of contact
points needed is bounded by C(ε)M logM , where M denotes the dimension
of the space.
Having shown this Lemma, we will use it to prove Theorem 5.11, which is
an approximate version of the John’s decomposition. By this approximate
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John’s decomposition it is possible to show Theorem 5.3. Namely, one can
construct the convex body K required in Theorem 5.3.
Let’s turn to the aforementioned lemma. We will make use of the notation of
rank-1 orthogonal projections (appendix, Definition A.39 and the following
remark). Its statement is the following:

Lemma 5.9.
Let K ∈ KM with John ellipsoid BM

2 and let ε > 0. Then, there exist

m ≤ C(ε)M logM

contact points x1, ..., xm and positive numbers c1, ..., cm so that the identity
operator in RM has the decomposition

idM =
N

m

m∑
i=1

cixi ⊗ xi + S,

where ‖S : `M2 → `M2 ‖ ≤ ε and N ∈ N with N ≤M(M + 3)/2.

Proof. Let ε > 0. Let K ∈ KM with John ellipsoid BM
2 . Then, by John’s

theorem, there exist N ≤M(M + 3)/2 contact points x1, ..., xN and positive
numbers c1, ..., cN such that the identity operator in RM can be decomposed
as

idM =
N∑
i=1

cixi ⊗ xi (5.21)

and
N∑
i=1

cixi = 0 (5.22)

holds.
Define the M ×N -matrix A := (ai,j) := (

√
cjxj(i)). Due to (5.21), we have

M∑
k=1

x(k)ek = x =

(
N∑
i=1

cixi ⊗ xi

)
(x) =

N∑
i=1

ci〈xi, x〉xi

=
N∑
i=1

ci

(
M∑
j=1

xi(j)x(j)

)(
M∑
k=1

xi(k)ek

)

=
M∑

j,k=1

(
N∑
i=1

√
cixi(j)

√
cixi(k)

)
x(j)ek.
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Hence,
∑N

i=1

√
cixi(j)

√
cixi(k) = δj,k and, thereby, that the rows of A are

orthonormal. With t :=
√

N
M

max
j=1,...,N

√
cj we have

√
N
M

(∑M
i=1 a

2
i,j

)1/2

≤ t.

Thus, by Theorem 5.7,

sup
x∈BM2

∣∣∣∣N|I|‖RIA
Tx‖2 − ‖x‖2

∣∣∣∣ ≤ ε

for a set I ⊂ {1, ..., N} with |I| ≤ C(ε)M logM . Since

sup
x∈BM2

∣∣∣∣N|I|‖RIA
Tx‖2 − ‖x‖2

∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣N|I|∑

i∈I

cixi ⊗ xi − idM

∣∣∣∣∣
∣∣∣∣∣ ,

we get by setting m = |I| and renaming (xi)i=1,...N so that (xi)i∈I are the
first m elements, that ∣∣∣∣∣

∣∣∣∣∣idM −Nm
m∑
i=1

cixi ⊗ xi

∣∣∣∣∣
∣∣∣∣∣ ≤ ε.

Taking the trace of this expression yields the statement of the theorem.

Before we go on, we introduce another lemma which will be needed to
show Theorem 5.11. We will only give the idea of proof and relegate the
reader to Lemma 3.2 of [R2] for further details.
It allows us to estimate the expectation of the norm of a randomized sum of
rank-1 orthogonal projections in terms of the norm of the sum off all rank-1
orthogonal projections which are partaking in the randomized sum. More
precisely, we have

Lemma 5.10.
Let y1, ..., yn ∈ RM and ε1, ..., εn be independent Bernoulli random variables.
Then, for some constant C,

E

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

εiyi ⊗ yi

∣∣∣∣∣
∣∣∣∣∣ ≤ C logM

√
log n max

i=1,...,n
‖yi‖

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

yi ⊗ yi

∣∣∣∣∣
∣∣∣∣∣
1/2

.

Proof. (Idea)
By an estimate of Dudley [L-T], one can show

E

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

εiyi ⊗ yi

∣∣∣∣∣
∣∣∣∣∣ ≤ C

∫ ∞
0

(
logN(BM

2 , δ, u)
)1/2

du,
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with the metric δ(x, y) =
(∑n

i=1 (〈x, yi〉2 − 〈y, yi〉2)
2
)1/2

.

One can estimate further with elementary arguments and show

N(BM
2 , δ, u) ≤ N

(
BM

2 , ‖ · ‖Y ,
1

ρ
u

)
,

where ‖ · ‖Y := sup
i=1,...,n

|〈·, yi〉| and ρ = 2 ||
∑n

i=1 yi ⊗ yi||
1/2

, and, furthermore,

E

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

εiyi ⊗ yi

∣∣∣∣∣
∣∣∣∣∣ ≤ Cρ

∫ ∞
0

(
logN

(
BM

2 , ‖ · ‖Y , v
))1/2

dv.

For v > 1 one has N
(
BM

2 , ‖ · ‖Y , v
)

= 1. By a standard volume estimate

N
(
BM

2 , ‖ · ‖Y , v
)
≤ N

(
BM

2 , ‖ · ‖,
1

ρ
u

)
≤
(

1 +
2

v

)M
.

Additionally, by an inequality of Pajor and Tomczak-Jaegermann [P-T], one
has (

logN
(
BM

2 , ‖ · ‖Y , v
))1/2 ≤ c

v
E‖g‖Y ≤ Cn1/ logn

√
log n,

where g denotes a standard gaussian vector in RM .
Combining these, one gets∫ ∞

0

(
logN

(
BM

2 , ‖ · ‖Y , v
))1/2

dv

≤
∫ M−1/2

0

(
M log

(
1 +

2

v

))1/2

dv +

∫ 1

M−1/2

C
√

log n
dv

v

≤ log(1 + 2
√
M) + C

√
log n log

√
M .

We now show the already mentioned theorem about the approximate
John’s decomposition. Note that the derivation of this theorem is necessary,
since the vectors xi and positive numbers ci of the approximate decomposition
of the identity operator idM in RM in Lemma 5.9 do not necessarily sum up
to zero, i.e.,

∑m
i=1 cixi 6= 0.

However, in this theorem we construct a vector u ∈ RM such that we get
yet another approximate decomposition of the identity operator in RM and,
additionally, that the vectors constituting this decomposition add up to zero.
This is a crucial condition for the construction of the body K in the proof of
Theorem 5.3.
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Theorem 5.11. (Approximate John’s decomposition)
Let K ∈ KM with John ellipsoid BM

2 and let ε > 0. Then there exist

m ≤ C(ε)M logM

contact points x1, ..., xm and a vector u, ‖u‖ ≤ C(ε)(M logM)−1/2, so that
the identity operator idM in RM has the decomposition

idM =
M

m

m∑
i=1

(xi + u)⊗ (xi + u) + S, (5.23)

where
m∑
i=1

(xi + u) = 0 (5.24)

and
‖S : `M2 → `M2 ‖ < ε. (5.25)

Proof. Let ε > 0. LetK ∈ KM with John ellipsoidBM
2 . Then, by Lemma 5.9,

there exist a decomposition of the identity operator idM in RM in terms of
the contact points x̄1, ..., x̄n of K and BM

2 and positive numbers c1, ..., cn,
where n ≤ C(ε)M logM , such that

idM =
N

n

n∑
i=1

cix̄i ⊗ x̄i + S,

where ‖S‖ ≤ ε
8

and N ∈ N with N ≤ M(M+3)
2

.
By defining c̄i := N

n
ci, we can write

idM =
n∑
i=1

c̄ix̄i ⊗ x̄i + S.

Set now L = b8Mn
ε
c and, for i = 1, ..., n, Ni = b c̄iL

M
c or Ni = b c̄iL

M
c + 1, such

that we have
∑n

i=1 Ni = L. Furthermore, define the sequence x1, ..., xL by
Ni times repeating x̄i. Define

T̄0 :=
M

L

L∑
i=1

xi ⊗ xi + S.
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Then we have

‖ idM −T̄0‖ =

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

(
c̄i −

NiM

L

)
x̄i ⊗ x̄i + S

∣∣∣∣∣
∣∣∣∣∣

≤

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

(
c̄i
L

M
−Ni

)
M

L
x̄i ⊗ x̄i + S

∣∣∣∣∣
∣∣∣∣∣

≤ M

L

n∑
i=1

∣∣∣∣c̄i LM −Ni

∣∣∣∣ ‖x̄i ⊗ x̄i‖+ ‖S‖

≤ M

L

n∑
i=1

‖x̄i ⊗ x̄i‖+ ‖S‖

≤ Mn

L
+
ε

8
≤ ε

4

and ∣∣∣∣∣
∣∣∣∣∣ML

L∑
i=1

xi

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

(
c̄i −

NiM

L

)
x̄i

∣∣∣∣∣
∣∣∣∣∣

≤ M

L

n∑
i=1

∣∣∣∣c̄i LM −Ni

∣∣∣∣ ‖x̄i‖
≤ M

L

n∑
i=1

‖x̄i‖ ≤
Mn

L
≤ ε

8
.

Set now u0 := − 1
L

∑n
i=1 x̄i and T0 := M

L

∑L
i=1(xi + u0)⊗ (xi + u0). We get

‖T0 − T̄0‖ =

∣∣∣∣∣
∣∣∣∣∣ML

L∑
i=1

(xi ⊗ u0 + u0 ⊗ xi) +Mu0 ⊗ u0 − S

∣∣∣∣∣
∣∣∣∣∣

≤ 2

∣∣∣∣∣
∣∣∣∣∣
(
M

L

L∑
i=1

xi

)
⊗ u0

∣∣∣∣∣
∣∣∣∣∣+M‖u0 ⊗ u0‖+ ‖S‖

≤ 2
ε

8
· ε

8M
+M

n2

N2
+
ε

8
≤ ε2

32M
+

ε2

16M
+
ε

8
≤ ε

4
,

where the last expression follows for sufficiently small ε.
Let {εi}Ni=1 be a sequence of independent Bernoulli random variables and
I1 = {i : εi = 1} be the set of indices of random variables with value 1.
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Clearly, with probability greater than 3/4, we have L/4 ≤ |I1| ≤ 3L/4.
Define the operator

T̄1 := 2
M

L

∑
i∈I1

(xi + u0)⊗ (xi + u0).

Set I0 := {1, ..., L} and momentarily yi := xi + u0. We have, by Markov’s
inequality, that

P
(
‖T̄1 − T0‖ ≥ E‖T̄1 − T0‖

)
≤ 1

2

and therefore, by Lemma 5.10, with probability at least 1/2

‖T̄1 − T0‖ ≤ E‖T̄1 − T0‖

=
M

L
E

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i∈I1

yi ⊗ yi −
∑

i∈I0\I1

yi ⊗ yi

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ M

L

E

∣∣∣∣∣
∣∣∣∣∣∑
i∈I1

yi ⊗ yi

∣∣∣∣∣
∣∣∣∣∣+ E

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

i∈I0\I1

yi ⊗ yi

∣∣∣∣∣∣
∣∣∣∣∣∣


=
M

L

(
E

∣∣∣∣∣
∣∣∣∣∣
L∑
i=1

εiyi ⊗ yi

∣∣∣∣∣
∣∣∣∣∣+ E

∣∣∣∣∣
∣∣∣∣∣
L∑
i=1

(1− εi)yi ⊗ yi

∣∣∣∣∣
∣∣∣∣∣
)

Lemma 5.10

≤ 2
M

L
C logM

√
logL max

i=1,...,L
‖yi‖

∣∣∣∣∣
∣∣∣∣∣
L∑
i=1

yi ⊗ yi

∣∣∣∣∣
∣∣∣∣∣
1/2

.

Since max
i=1,...,L

‖yi‖ ≤ C, for some constant C, and

∣∣∣∣∣
∣∣∣∣∣
L∑
i=1

yi ⊗ yi

∣∣∣∣∣
∣∣∣∣∣ =

L

M
||T0|| ≤

L

M

(
‖T0 − T̄0‖+ ‖T̄0 − idM‖+ ‖idM‖

)
≤ 2

L

M
,

we can further estimate this to get

‖T̄1 − T0‖ ≤ 4C

√
M

L
logM

√
logL (5.26)

Set

u1 := − 1

|I1|
∑
i∈I1

(xi + u0).

Since
∑L

i=1(xi +u0) = 0, we have
∑

i∈I1(xi +u0) = −
∑

i∈I0\I1(xi +u0). This
implies, by Jensen’s inequality, linearity of the expectation, independence of
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the εi, and E(εi − 1/2) = 0, that

E

∣∣∣∣∣
∣∣∣∣∣
L∑
i=1

εi(xi + u0)

∣∣∣∣∣
∣∣∣∣∣ = E

∣∣∣∣∣
∣∣∣∣∣
L∑
i=1

(
εi −

1

2

)
(xi + u0)

∣∣∣∣∣
∣∣∣∣∣

≤

√√√√ L∑
i=1

E
(
εi −

1

2

)2

‖xi + u0‖

≤

√√√√ L∑
i=1

1

2
=

√
L

2
.

Therefore, we can choose I1 such that L/4 ≤ |I1| ≤ 3L/4, (5.26) holds and

‖u1‖ =
1

|I1|

∣∣∣∣∣
∣∣∣∣∣
L∑
i=1

εi(xi + u0)

∣∣∣∣∣
∣∣∣∣∣ ≤

√
M√

2|I1|
≤
√

2√
|I1|

.

Set

T1 := 2
M

L

∑
i∈I1

(xi + u0 + u1)⊗ (xi + u0 + u1).

We have ∣∣∣∣∣
∣∣∣∣∣ML ∑

i∈I1

(xi + u0)

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣ML ∑

i∈I1

xi +
M |I1|
L

u0

∣∣∣∣∣
∣∣∣∣∣

≤ M

L

∑
i∈I1

‖xi‖+
M |I1|
L
‖u0‖

≤ M |I1|
L

(
1 +

ε

8M

)
,

and, thereby,

‖T1 − T̄1‖ ≤ 2
M

L

(∣∣∣∣∣
∣∣∣∣∣∑
i∈I1

((xi + u0)⊗ u1 + u1 ⊗ (xi + u0))

∣∣∣∣∣
∣∣∣∣∣+ |I1|‖u1 ⊗ u1‖

)

≤ 2
M |I1|
L

(
1 +

ε

8M

)
·
√

2√
|I1|

+ 2
M |I1|
L
· 2

|I1|

≤
4
√

2|I1|M
L

+
4M

L

≤
(

1 +
√

2|I1|
)
· ε

2n
.
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Repeating these steps inductively, we get a sequence of sets Is ⊂ ... ⊂ I1 ⊂
I0 = {1, ..., L} and a sequence of vectors u0, u1, ..., us for which

1

4
|Ik| ≤ |Ik+1| ≤

3

4
|Ik|,

‖uk‖ ≤
√

2√
Ik

and ∑
i∈Ik

(xi + u0 + ...+ uk) = 0

holds. Furthermore, we have for the operator

Tk := 2k
M

L

∑
i∈Ik

(xi + u0 + ...+ uk)⊗ (xi + u0 + ...+ uk)

that

‖Tk+1 − Tk‖ ≤ C

√
M

|Ik|
logM

√
log |Ik|. (5.27)

Now we sum up the inequalities (5.27) and get

‖ idM −Ts‖ ≤ ‖ idM −T0‖+
s−1∑
k=0

‖Tk − Tk+1‖ ≤
ε

4
+ CM logM

s−1∑
k=0

√
log |Ik|√
|Ik|

.

Choosing s such that the last expression of these inequalities is smaller than
ε/2 one would be able to conclude that |Is| ≤ C(ε)M log3M . But, since
n ≤ C(ε)M logM and |Is| ≤ n, we actually even have |Is| ≤ C(ε)M logM .
It follows that

‖u0 + u1 + ...+ us‖ ≤
C(ε)√
M logM

.

By setting m = |Is|, u = u0 + ... + us and renaming {1, ..., L} such that Is
becomes the initial sequence {1, ...,m}, we obtain (5.24) and∣∣∣∣∣

∣∣∣∣∣idM −2sM

L

m∑
i=1

(xi + u)⊗ (xi + u)

∣∣∣∣∣
∣∣∣∣∣ ≤ ε

2
.

By this,
∣∣M − 2sM

L
m
∣∣ < ε

2
M holds and we can further estimate this to get∣∣∣∣∣

∣∣∣∣∣idM − M

m

m∑
i=1

(xi + u)⊗ (xi + u)

∣∣∣∣∣
∣∣∣∣∣ ≤ ε.

Taking the trace of this returns (5.23) and (5.25).
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With the help of this Theorem we can finally show Theorem 5.3.

Proof. (Theorem 5.3)
Let B be embedded in RM so that BM

2 is its John ellipsoid and let ε > 0. We
use Theorem 5.11, namely that B has an approximate John’s decomposition,
to construct the convex body K. Define B̄ := B + u, yi := xi + u and

T = idM −S =
M

m

m∑
i=1

yi ⊗ yi,

where ‖S‖ < ε/8.
We see that (5.24) can be written as

m∑
i=1

yi = 0. (5.28)

Let v ∈ RM be a vector with ‖v‖ ≤ ε/
√
M , which will be defined later.

Furthermore, set

Tv =
M

m

m∑
i=1

(yi + v)⊗ (yi + v),

Rv = T
1/2
v and E := Ev := RvB

M
2 .

By (5.28), we have

‖Tv − idM ‖ ≤ ‖Tv − T‖+ ‖S‖

≤

∣∣∣∣∣
∣∣∣∣∣Mm

m∑
i=1

(yi ⊗ v + v ⊗ yi)

∣∣∣∣∣
∣∣∣∣∣+M‖v ⊗ v‖+ ‖S‖

= M‖v ⊗ v‖+ ‖S‖ ≤ ε2 +
ε

8
<
ε

4
(5.29)

for sufficiently small ε. Thus, (1− ε
4
)E ⊂ BM

2 ⊂ (1 + ε
4
)E .

Denote

zi :=
1

‖yi + v‖E
(yi + v)

and set

K̃ := conv

(
1

1 + ε
(B̄ + v), z1, ..., zm

)
.

Since B ⊂ BM
2 and ‖v‖ ≤ ε/

√
M , we get that the only contact points of K̃

with E are z1, ..., zm. We go on to show

1

1 + ε
(B̄ + v) ⊂ K̃ ⊂ (1 + 2ε)(B̄ + v).
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The first inclusion follows by the definition of K̃. To show the other inclusion,
let x ∈ K̃ and consider the decomposition

x =
α0

1 + ε
b+

m∑
i=1

αizi,

where b ∈ B̄ + v, αi ≥ 1 and
∑m

i=0 αi ≤ 1.
From xi ∈ ∂B and yi + v ∈ ∂(B̄ + v) we get ‖yi + v‖B̄+v = 1. Since
‖v‖ ≤ ε/

√
M and ‖u‖ ≤ C(ε)(M logM)−1/2, we have, for sufficiently large

M , that ‖u‖+ ‖v‖ ≤ ε/2 and can conclude, that

‖yi + v‖E ≥
(

1

1 + ε
4

)
‖yi + v‖

≥
(

1

1 + ε
4

)
(‖xi‖ − ‖u‖ − ‖v‖)

≥
(

1

1 + ε
4

)(
1− ε

2

)
≥ 1− ε

Using now the triangle inequality, we can show that

‖x‖ ≤ α0

1 + ε
‖b‖+

m∑
i=1

αi
‖yi + v‖B̄+v

‖yi + v‖E
≤ α0

1 + ε
+

1

1− ε

m∑
i=1

αi ≤ 1 + 2ε.

Thus, we can define the following decomposition of the identity operator in
RM

idM = R−1
v ◦ T ◦R−1

v =
m∑
i=1

M

m
‖yi + v‖2

E(R
−1
v zi)⊗ (R−1

v zi).

Setting ai := M
m
‖yi + v‖2

E and ui := R−1
v zi, for i = 1, ...,m, this reads as

idM =
m∑
i=1

aiui ⊗ ui. (5.30)

By defining K := R−1
v K̃, we get a body K ⊂ BM

2 that has u1, ..., um as the
only contact points with BM

2 . It remains to choose the vector v, so that

m∑
i=1

aiui = 0, (5.31)
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since then, (5.30) and (5.31) become a John’s decomposition of K and BM
2

is its John ellipsoid.
To do so, we rewrite (5.31) in the following way

0 =
m∑
i=1

aiui

=
M

m
R−1
v

(
m∑
i=1

∣∣∣∣R−1
v (yi + v)

∣∣∣∣2 yi + v

||R−1
v (yi + v)||

)

=
M

m
R−1
v

(
m∑
i=1

〈yi + v, T−1
v (yi + v)〉1/2(yi + v)

)
.

Define, with the above reformulation, the function F : ε√
M
BM

2 → RM by

F (v) = −

(
m∑
i=1

〈yi + v, T−1
v (yi + v)〉1/2

)−1( m∑
i=1

(
〈yi + v, T−1

v (yi + v)〉1/2 − 1
)
yi

)
.

Recall that the Brouwer fixed point theorem states, that a continuous map-
ping G from the Euclidean unit ball into itself has a fixed point, i.e., a point
w for which G(w) = w. Obviously, the same holds true for a stretched or
shrinked version of the unit ball.
Hence, if we can show that for all w, with ‖w‖ ≤ ε/

√
M , it holds that

‖F (w)‖ ≤ ε/
√
M , then there exists a vector v, with ‖v‖ ≤ ε/

√
M , that

fulfills (5.31).

Let u ∈ BM
2 be a vector and α1, ..., αm, then by Cauchy-Schwarz∣∣∣∣∣

〈
m∑
i=1

αiyi, u

〉∣∣∣∣∣ =

∣∣∣∣∣
m∑
i=1

αi 〈yi, u〉

∣∣∣∣∣
≤

(
m∑
i=1

α2
i

)1/2( m∑
i=1

〈yi, u〉2
)1/2

≤
√
m max

i=1,...,m
|αi|

(
m∑
i=1

〈yi, u〉2
)1/2

≤ m√
M

max
i=1,...,m

|αi|‖T‖

≤ m√
M

max
i=1,...,m

|αi|(1 + ε), (5.32)
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since ‖T‖ = ‖idM − S‖ ≤ ‖idM‖+ ‖S‖ ≤ 1 + ε/8 ≤ 1 + ε.
Furthermore, we have that∣∣∣〈yi + w, T−1

w (yi + w)
〉1/2 − 1

∣∣∣
≤
∣∣∣〈yi + w, yi + w〉1/2 − 1

∣∣∣+
∣∣∣〈yi + w, yi + w〉1/2 −

〈
yi + w, T−1

w (yi + w)
〉1/2
∣∣∣ .

With (5.29), i.e., ‖Tw−idM‖ ≤ ε/4, and ‖yi+w‖ ≤ 2 we can estimate further
and conclude, for sufficiently large M , that this is smaller than∣∣∣〈yi + w, yi + w〉1/2 − 1

∣∣∣+ 2‖idM − Tw‖ ≤
2ε√
M

+ 2
ε

4
≤ 2ε

3
. (5.33)

We just showed in the estimate (5.33)∣∣〈yi + w, T−1
w (yi + w)〉1/2 − 1

∣∣ ≤ 2‖idM − Tw‖ ≤ ε/2,

which, by the triangle and inverse triangle inequality, implies

1− ε ≤ 〈yi + w, T−1
w (yi + w)〉1/2 ≤ 1 + ε.

On the one hand, we get from this that

m∑
i=1

〈yi + w, T−1
w (yi + w)〉1/2 ≥ m(1− ε), (5.34)

and on the other hand, since m
M
ai = 〈yi + w, T−1

w (yi + w)〉1/2, that

m

M
ai ∈ [1− ε, 1 + ε].

Thus, by (5.34), (5.32) and (5.33), we have for w ∈ ε√
M
BM

2

‖F (w)‖ =

∣∣∣∣∣
m∑
i=1

〈yi + w, T−1
w (yi + w)〉1/2

∣∣∣∣∣
−1 ∣∣∣∣∣
∣∣∣∣∣
m∑
i=1

(
〈yi + w, T−1

w (yi + w)〉1/2 − 1
)
yi

∣∣∣∣∣
∣∣∣∣∣

≤ 1√
M

1 + ε

1− ε
· 2

3
ε ≤ ε√

M
.

Hence, there exist a vector v with ‖v‖ ≤ ε√
M

satisfying (5.31).



Appendix A

In this appendix we provide results which are used throughout this work.
References to proofs of these theorems and lemmas are given.

Probability theory

Lemma A.1.
Let T 6= ∅ be an index set and (Ω,F), (Ω′,F ′) and (Ωt,Ft) be measure
spaces, t ∈ T . Furthermore, let (Xt)t∈T be a family of measurable maps
Xt : Ω′ → Ωt such that F ′ = σ(Xt : t ∈ T ) holds. Then, the map Y : Ω→ Ω′

is F -F ′-measurable, if and only if Xt ◦Y is F -Fi-measurable for every t ∈ T .

Proof. see [K], Page 35.

Definition A.2. (Dynkin system)
Let Ω be a set. Then, a set D ⊂ P(Ω) is called a Dynkin system, if

(i) Ω ∈ D

(ii) A ∈ D =⇒ AC ∈ D

(iii) {An}n∈N ⊂ D disjoint =⇒
⋃
n∈NAn ∈ D.

Theorem A.3. (Dynkin’s theorem)
Let E ⊆ P(Ω) be closed under finite intersection. Then, it holds that

δ(E) = σ(E),

where δ(E) denotes the generated Dynkin system.
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Proof. see [K], Page 7.

Lemma A.4. (Uniqueness by generators with finite intersection property)
Let (Ω,F , µ) be a σ-finite measure space and let E ⊂ F be a generator of F
which is closed under finite intersection and such, that there exists a sequence
(En)n∈N with En ∈ E , µ(En) <∞, for all n ∈ N and En ↑ Ω.
Then, µ is uniquely determined by the values µ(E) for E ∈ E .
If µ is a probability measure, the lemma holds without the existence of the
sequence (En)n∈N.

Proof. see [K], Page 19.

Theorem A.5. (Monotone convergence theorem)
Let (fn)n∈N be a monotonously growing sequence of positive, measurable
functions. Then, following holds∫

Ω

sup
n∈N

fndµ = sup
n∈N

∫
Ω

fndµ.

Proof. see [K], Page 85.

Lemma A.6. (Dominated convergence theorem)
Let f be measurable and (fn)n∈N a sequence in L1(µ) with fn

n→∞→ f con-
verging in probability. Let 0 ≤ g ∈ L1(µ) be such that |fn| ≤ g almost
everywhere for all n ∈ N. Then, it holds that f ∈ L1(µ) and fn

n→∞→ f in L1,
i.e., ∫

fndµ
n→∞→

∫
fdµ.

Proof. See [K], Page 135.

Theorem A.7.
Let (E, d) be a metric space, x0 ∈ E and f : Ω × E → R a map with the
properties that

(i) for every x ∈ E the map ω 7→ f(ω, x) is in L1(µ),

(ii) for almost all ω ∈ Ω the map x 7→ f(ω, x) is continuous in x0,

(iii) the map h : ω 7→ supx∈E |f(ω, x)| is in L1(µ).

Then, the map F : E → R, x 7→
∫
f(ω, x)µ(dω) is continuous in x0.

Proof. see [K], Page 136.
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Theorem A.8. (Factorization theorem)
Let (Ω′,F ′) be a measure space and let Ω be a non-empty set. Let f : Ω→ Ω′

be a map. A map g : Ω → R̄ is σ(f)-B(R̄)-measurable, if and only if there
exists a measurable map ϕ : (Ω′,F ′)→ (R̄,B(R̄)) with g = ϕ ◦ f .

Proof. see [K], Page 40.

Definition A.9. (Conditional expectation, conditional probability)
A random variable Y is called conditional expectation of a random vari-
able X given the σ-algebra F , denoted by Y = E(X|F), if

(i) Y is F -measurable

(ii) ∀A ∈ F : E(X1A) = E(Y 1A).

For each B ∈ F , the conditional probability of B given F is defined as
P(B|F) := E(1B|F).

Theorem A.10. (Properties of the conditional expectation)
Let (Ω,F ,P) be a probability space and let X, Y ∈ L1(Ω,F ,P) be random
variables. Furthermore, let G ⊂ F be a sub-σ-algebra. Then, we have that

(i) (Monotonicity) E(X|G) ≥ E(Y |G), if X ≥ Y almost surely.

(ii) (Dominated Convergence) lim
n→∞

E(Xn|G) = E(X|G) almost surely

and in L1(Ω,F ,P), if Y ≥ 0 and (Xn)n∈N is a sequence of random
variables with |Xn| ≤ Y , n ∈ N, and Xn → X almost surely, as n→∞.

Proof. see [K], Page 170.

Theorem A.11. (Uniqueness theorem for measures)
Let F ⊆ P(Ω) be a σ-algebra and let E be such, that it is closed under finite
intersection and that σ(E) = F . If µ, ν : F → [0,∞] are measures with
µ|E = ν|E and µ|E σ-finite, then µ = ν holds and µ is σ-finite.

Proof. see [S], Page 63, 64.

Theorem A.12. (Carathéodory extension theorem)
Let R ⊆ P(Ω) be a ring and µ be a σ-finite pre-measure on R. Then, there
exists a unique measure µ̃ on σ(R) such that µ̃|R = µ and µ̃ is σ-finite.

Proof. see [K], Page 19.

Definition A.13. (∅-continuity)
Let µ be a content on the ring R. µ is called ∅-continuous, if for every
sequence (An)n∈N in R with µ(An) <∞ and An ⊃ An+1, for all n ∈ N, and⋂
n∈NAn = ∅, it holds that µ(An)→ 0 as n→∞.
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Lemma A.14.
Let µ be a finite content on the ring R. Then, the following two statements
are equivalent

(i) µ is σ-additive (and therefore a pre-measure),

(ii) µ is ∅-continuous.

Proof. see [S], Page 54.

Theorem A.15.
Let (Et)t∈T be an independent family of sets Et ⊂ F which are closed under

finite intersection and let (Tj)j∈J be a partition of T . If Fj := σ
(⋃

i∈Ij Ei
)

are the σ-algebras generated by all Ei with i ∈ Ij, then the family (Fj)j∈J is
independent.

Proof. see [B], Page 45 and 46.

Definition A.16. (Hölder-continuity)
Let (E, d), (E ′, d′) be metric spaces and γ ∈ (0, 1]. A mapping ϕ : E → E ′ is
Hölder-continuous of order γ in a point r ∈ E, if there exists an ε > 0
and a C <∞, such that for all s ∈ E with d(s, r) < ε it holds that

d′(ϕ(r), ϕ(s)) ≤ C · d(r, s)γ. (A.1)

ϕ is called locally Hölder-continuous of order γ, if for every t ∈ E an
ε > 0 and a C = C(t, ε) > 0 exists, such that for all s, r ∈ E with d(s, t) < ε
and d(r, t) < ε, inequality (A.1) holds.
ϕ is called Hölder-continuous of order γ, if there exists a C, such that
(A.1) holds for all s, r ∈ E.

Theorem A.17.
Let {(Ωi,Fi, µi)}1≤i≤n, n ∈ N, be a family of σ-finite measure spaces. There
exist a unique measure µ : F{1,...,n} 7→ [0,∞] such that

∀
�
{1,...,n}

Ai ∈ F{1,...,n} : µ

(
n∏
i=1

Ai

)
=

n∏
i=1

µi(Ai)

holds. The measure µ is σ-finite. µ is a probability measure, if all µi are
probability measures.

Proof. see [S], Page 173.
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Theorem A.18. (Integration with respect to push-forward measure)
Let (Ω1,F1) be a measurable space, (Ω2,F2, µ) be a measure space and T :
Ω2 → Ω1 be a measurable map. Furthermore, let f : Ω1 → [−∞,∞] be a
measurable function. Then∫

fd(µ ◦ T−1) =

∫
f ◦ Tdµ

holds if either integral is defined.

Proof. See [D1], Page 121.



Existence of the Brownian
Motion

The main concern of this chapter will be to prove the existence of the Brow-
nian motion on R. The way this is done here is more extensive than neces-
sary, but will eventually allow us to apply a similar result to a wider range of
stochastic processes. Namely, we will see that the construction we use only
relies on a certain convolution behavior a family of probability measures can
have.

Definition A.19.
A stochastic process X = (Xt)t∈T with values in Ω2 is

(i) real-valued, if Ω2 = R,

(ii) a process with independent increments, if for every n ∈ N and all
t0, ..., tn ∈ T , with 0 = t0 < ... < tn, it holds that

Xt0 , Xt1 −Xt0 , ..., Xtn −Xtn−1 is independent,

(iii) a process with stationary increments, if for all r, s, t ∈ T it holds
that

PXr+s+t−Xs+t = PXr+s−Xs .

If 0 ∈ T , this simplifies to PXr+s−Xs = PXr−X0 for all r, s ∈ T .

Remark. The independence as demanded in (ii) implies that the indepen-
dence holds for any choice of times 0 ≤ t0 < ... < tn.
In the case that t0 > 0 it suffices to add t−1 := 0 to the sequence of points of
time. From Xt0 = Xt−1 + (Xt0 −Xt−1) one sees that Xt0 is measurable w.r.t
to the σ-algebra C generated by Xt−1 and Xt0 −Xt−1 , i.e. σ(Xt0) ⊂ C.
If Xt−1 , Xt0 − Xt−1 ,..., Xtn − Xtn−1 are independent, it follows from Theo-
rem A.15, in the appendix, that C, σ(Xt1 −Xt0),...,σ(Xtn −Xtn−1) are inde-
pendent and consequently that Xt0 , Xt1−Xt0 ,..., Xtn−Xtn−1 are independent

95
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Usually one uses the motion of a pollen in resting water to give an idea
how to abstract a Brownian motion from a real life application. A convenient
description is given in [D1] or [M-P].

Definition A.20. (Standard Brownian motion)
A real-valued stochastic process B = (Bt)t∈[0,∞) is a Brownian motion, if

(i) B0 = 0 almost surely,

(ii) B has stationary and independent increments,

(iii) Bt is normally distributed with mean 0 and variance t, i.e. Bt ∼ N0,t

(iv) the paths t 7→ Bt of B are P-almost surely continuous, for all t ∈ T .

Remark. When we refer to Brownian motion throughout this work, we always
refer to the Standard Brownian motion.

From here on, as already mentioned, we will study the existence of the
Brownian motion in an exhaustive way. This will further illustrate the power
of transition kernels, when working with stochastic processes.

Definition A.21. Concatenation of kernels
Let (Ωi,Fi), i = 0, 1, 2, be measurable spaces and let κi be stochastic kernels
from (Ωi−1,Fi−1) to (Ωi,Fi), i = 1, 2. The Concatenation of κ1 and κ2 is
defined by

κ1 · κ2 : Ω0 ×F2 → [0,∞)

(ω0, A2) 7→
∫
Ω1

κ1(ω0, dω1)κ2(ω1, A2).

Remark. The concatenation of kernels is just a special case of the product
of kernels. With the first remark on the product of stochastic kernels this
can be written as (κ1 · κ2)(ω0, A2) = (κ1 ⊗ κ2)(ω0, π

−1
2 (A2)), for all A2 ∈ F2,

where π2 denotes the projection to Ω2.

Definition A.22. (Consistent family of kernels)
Let E be a Polish space, T ⊂ R a non-empty index set and let (κs,t : s, t ∈
T, s < t) be a family of stochastic kernels from E to E. The family is called
consistent, if for all r, s, t ∈ T , with r < s < t, it holds that

κr,s · κs,t = κr,t.
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Definition A.23.
Let E be a Polish space and let T ⊂ [0,∞) be a semigroup. A family (κt)t∈T
of stochastic kernels from E to E is a semigroup of stochastic kernels or
Markovian semigroup, if the Chapman-Kolmogorov equation holds,
i.e.,

∀s, t ∈ T : κs · κt = κs+t.

Lemma A.24.
If (κt)t∈T is a Markovian semigroup, then the family of kernels defined by
κ̃s,t := κt−s, t > s, is consistent.

Proof. Let r, s, t ∈ T with r < s < t. Since (κt)t∈T is a Markovian semigroup
the Chapman-Kolmogorov equation holds and we have that

κ̃r,s · κ̃s,t = κr−s · κs−t = κr−s+s−t = κr−t = κ̃r,t.

The following result gives the existence of a stochastic kernel on the prod-
uct space of, up to uncountably many, polish spaces under the assumption
that the kernels defined on each of these polish spaces form a consistent family
of stochastic kernels, as defined above. This theorem utilizes the Kolmogorov
existence theorem and is the core result of this chapter.

Theorem A.25. (Kernel given by a consistent family of kernels)
Let T ⊂ [0,∞) and let (κs,t : s, t ∈ T, s < t) be a consistent family of
stochastic kernels on a Polish space E. Then, there exists a kernel κ from
(E,B(E)) to (ET ,B(E)⊗T ), such that for each x ∈ E and J := {j0, ..., jn} ∈
E(T ), with 0 = j0 < ... < jn, it holds that

κ(x, · ) ◦ π−1
J =

(
n−1⊗
k=0

κjk,jk+1

)
(x, · ).

Proof. In order to prove this we have to show that κ exists and that it is a
stochastic kernel.
The Kolmogorov existence theorem guarantees the existence of the kernel κ,
if the family PJ := (

⊗n−1
k=0 κjk,jk+1

)(x, · ), J ∈ E(T ) with 0 ∈ J , is projective.
Let 0 ∈ L ⊂ J ⊂ T , L, J ∈ E(T ). We have to show that PJ ◦ (πJL)−1 = PL.
W.l.o.g. we can assume that L = J \ {j`} with ` = 1, ..., n, since the general
case follows inductively.
We have to distinguish two case. First, let ` = n, let Aj0 , ..., Ajn−1 ∈ B(E)
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and define A :=
�

j∈LAj. Then, we have that

(PJ ◦ (πJL)−1)(A) = PJ(A× E) = (PL ⊗ κjn−1,jn)(A× E)

=

∫
A

PL(d(ω0, ..., ωn−1))κjn−1,jn(ωn−1, E) =

∫
A

PL(d(ω0, ..., ωn−1)) = PL(A).

For the second case, let ` ∈ {1, ..., n−1}, let Aj ∈ B(E) for all j ∈ L and de-
fine the sets A :=

�
j∈LAj, A1 :=

�`−1
k=1Ajk and A2 :=

�n
k=`+1 Ajk . To fur-

ther simplify the notation we introduce fi(ωi) := (
⊗n

k=i κjk,jk+1
)(ωi, Aji+1

×
...× Ajn) for all i = 0, ..., n− 1.
Since we are dealing with a consistent family of kernels and Fubini’s theorem
holds true for finite transition kernels (see [K], Page 270) we get that

f`−1(ω`−1) = (
n⊗

k=`−1

κjk,jk+1
)(ω`−1, E × A2)

=

∫
E

κj`−1,j`(ω`−1, dω`)

∫
Aj`+1

κj`,j`+1
(ω`, dω`+1)(

n⊗
k=`+1

κjk,jk+1
)(ω`+1, Aj`+2

× ...× Ajn)

Fubini
=

∫
Aj`+1

∫
E

κj`−1,j`(ω`−1, dω`)κj`,j`+1
(ω`, dω`+1)f`+1(ω`+1)

Consistency
=

∫
Aj`+1

κj`−1,j`+1
(ω`−1, dω`+1)f`+1(ω`+1).

From this, it follows that

(PJ ◦ (πJL)−1)(A) = PJ(A1 × E × A2) = (
n⊗
k=0

κjk,jk+1
)(x,A1 × E × A2)

=

∫
A1

(
`−2⊗
k=0

κjk,jk+1
)(x, d(ω1, ..., ω`−1))(

n⊗
k=`−1

κjk,jk+1
)(dωl−1, E × A2)

=

∫
A1

(
`−2⊗
k=0

κjk,jk+1
)(x, d(ω1, ..., ω`−1))

∫
Aj`+1

κj`−1,j`+1
(ω`−1, dω`+1)f`+1(ω`+1)

= (
`−2⊗
k=0

κjk,jk+1
⊗ κj`−1,j`+1

⊗
n⊗

k=`+1

κjk,jk+1
)(x,A) = PL(A),
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and, therefore, that PJ := (
⊗n

k=0 κjk,jk+1
)(x, · ), J ∈ E(T ) with 0 ∈ J , is

projective.

To finish the proof we need to show that κ is a stochastic kernel, i.e., that
x 7→ κ(x,A) is B(E)-B(E)⊗T -measurable. From Corollary 2.15, we know
that it suffices to show this for rectangular cylinders with finite Basis ZR,
since Lemma 2.12 gives that this is a generator of B(E)⊗T with the finite
intersection property.
Let 0 = t0 < ... < tn, B0, ..., Bn ∈ B(E) and A :=

⋂n
i=0 π

−1
ti (Bi).

From Lemma 2.16, the lemma about products of kernels, we know that the
finite product of stochastic kernels is stochastic and, therefore, that

x 7→ Px(A) = (
n−1⊗
i=0

κti+1−ti)(x,

n�
i=0

Bi)

is measurable for every rectangular cylinder with finite basis.

To be able to use this central theorem, we have to reformulate it for
Markovian semigroups. The reformulation will tell us how a probability
measure on a product space of uncountably many polish spaces, depending
on a ”starting distribution”, has to look.

Corollary A.26. (Measures by Markovian semigroups)
Let (κt)t∈T be a Markovian semigroup on a Polish space E. Then, there exists
a unique stochastic kernel κ from (E,B(E)) to (ET ,B(E)⊗T ) such that for
all J := {t0, ..., tn}, 0 = t0 < ... < tn ∈ T ,

∀x ∈ E ∀J : κ(x, ·) ◦ π−1
J =

(
n−1⊗
k=0

κtk+1−tk

)
(x, ·).

For every probability measure µ on E there exists a unique probability mea-
sure Pµ on (ET ,B(E)⊗T ) such that

∀J : Pµ ◦ π−1
J = µ⊗

n−1⊗
k=0

κtk+1−tk

Proof. Since (κt)t∈T is a Markovian semigroup, we have from Lemma A.24
that κ̃s,r := κr−s, r > s, is a consistent family of kernels. The unique
existence of the kernel κ follows from Theorem A.25. From the first remark
on products of stochastic kernels it follows that for any probability measure
µ on E the product µ⊗

⊗n−1
k=0 κtk+1−tk is a probability measure.
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Definition A.27.
A Markovian semigroup (κt)t∈T on (Rd,B(R)d) is called translation invari-
ant if, for every t ∈ T , it holds that

∀x, z ∈ Rd, A ∈ B(R)d : κt(x,A) = κt(x+ z, A+ z).

Lemma A.28.
Let (Pt)t∈R+ be a family of probability measures on Rd such that for all
s, t ∈ R+ it holds that Ps ∗ Pt = Ps+t. Then, κt(x,A) := Pt(A− x) defines a
translation invariant Markovian semigroup (κt)t∈R+ on (Rd,B(R)d).

Proof. By definition κt(x+z, A+z) = Pt(A+z−x−z) = Pt(A−x) = κt(x,A)
holds for all x, z ∈ Rd, A ∈ B(R)d, t ∈ R+ and, therefore, that (κt)t∈R+ is
translation invariant.
Obviously, κt(x,A) = Pt(A − x) is a probability measure for each x ∈ Rd.
Since, for each A ∈ B(R)d, the map (x, y) 7→ 1A(x + y) is the composition
of the continuous map (x, y) 7→ x + y with the B(R)d-measurable indicator
function 1A, it is B(R)d ⊗ B(R)d-measurable. The B(R)d-measurability of

x 7→
∫
1A(x+ y)Pt(dy) =

∫
1A−x(y)Pt(dy) = Pt(A− x)

then follows by Fubini’s theorem. Therefore, (κt)t∈R+ are stochastic kernels.
Furthermore, (κt)t∈R+ is a Markovian semigroup, which follows from the fact
that the Chapman-Kolmogorov equation holds:

κs+t(x,A) = Ps+t(A− x) = (Ps ∗ Pt)(A− x) =

∫
Ps(dy)Pt(A− y − x)

=

∫
κs(x, d(x+ y))κt(y + x,A) = (κs · κt)(x,A).

As one sees now, it suffices to have a family of probability measures
(Pt)t∈R+ with Ps ∗ Pt = Ps+t for all s, t ∈ R+, for all the result we have so
far to be true. Furthermore, with the help of this property we can derive the
second crucial theorem of this chapter.

Theorem A.29.
Let (Ω,F ,Pµ, (Xt)t≥0) be the process coming from a translation invariant
Markovian semigroup (Pt)t≥0 on Rd and a probability measure µ, where Xt

is the t-th coordinate function.
Then, the process (Xt)t≥0 has stationary and independent increments. Fur-
thermore, it holds for s, t ∈ R+, with s ≤ t, that

PµXt−Xs = Pt−s.
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Proof. First, define Y := (Xs, Xt) and the map q(x1, x2) := x2− x1. Clearly,
q is continuous and thereby Borel-measurable. With these definitions PµXt−Xs
is the distribution of q ◦ Y w.r.t. Pµ, i.e.,

PµXt−Xs(B) = Pµ{Xt −Xs ∈ B} = Pµ{q ◦ Y ∈ B} = Pµ{Y ∈ q−1(B)}

and, therefore, we have

PµXt−Xs(B) =

∫ ∫ ∫
1q−1(B)(x1, x2)κt−s(x1, dx2)κs(x, dx1)µ(dx)

=

∫ ∫ ∫
1x1+B(x2)κt−s(x1, dx2)κs(x, dx1)µ(dx)

=

∫ ∫
κt−s(x1, x1 +B)κs(x, dx1)µ(dx)

trans.inv.
= Pt−s(B)

∫ ∫
κs(x, dx1)µ(dx)

= Pt−s(B).

By this, we have that PµXt+s−Xs = P(t+s)−s = Pt−0 = PµXt−X0
and consequently

that (Xt)t≥0 is stationary.

In the following let J = t0, ..., tn with 0 = t0 < ... < tn.
To see the independence of the increments we make the observation that
κt(x,A) = Pt(A−x) can be written as

∫
1A(y)κt(x, dy) =

∫
1A(x+y)Pt(dy).

For a Borel-measurable function f : (Rd)n 7→ [0,∞] successive application of
this yields∫

f(x1, ..., xn)PJ(d(x1, ..., xn))

=

∫
...

∫
f(x0 + x1, ..., x0 + ...+ xn)Ptn−tn−1(dxn)...Pt1(dx1)µ(dx0).

From this and the transformation formula (Appendix, Theorem A.18), to-
gether with defining Y0 := Xt0 , Y1 := Xt1 − Xt0 ,...,Yn := Xtn − Xtn−1 , and
Xt−1 := 0, it follows that

Pµ(Y0,...,Yn)(A0 × ...× An)

=

∫
1A0×...×AndP

µ
(Y0,...,Yn)

=

∫
1A0×...×An ◦ (Y0, ..., Yn)dPµ

=

∫ n∏
j=0

(1Aj ◦ Yj)dPµ
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=

∫ n∏
j=0

1Aj ◦ (Xtj −Xtj−1
)dPµ

=

∫
1A0(x0)

n∏
j=1

1Aj(xj − xj−1)PJ(d(x0, ..., xn))

=

∫
...

∫
1A0(x−1 + x0)

n∏
j=1

1Aj(xj)Ptn−tn−1(dxn)...Pt0(dx0)µ(dx−1)

=

(
n∏
j=1

∫
1Aj(xj)Ptj−tj−1

)∫
1A0(x−1 + x0)µ(dx−1)

= µ(A0)
n∏
j=1

Ptj−tj−1
(Aj).

Since P0 = δ0 and Y0 = Xt0 = X0, it holds that

PµY0(A0) =

∫
κ0(x,A0)µ(dx)

=

∫
P0(A0 − x)µ(dx)

=

∫
δ0(A0 − x)µ(dx)

= µ(A0)

and, together with the stationarity, that

µ(A0)
n∏
j=1

Ptj−tj−1
(Aj) = PµY0(A0)

n∏
j=1

Ptj−tj−1
(Aj)

stat.
= PµY0(A0)

n∏
j=1

PµXtj−Xtj−1
(Aj)

=
n∏
j=0

PµYj(Aj)

Definition A.30. (Modification/Version)
Let X and Y be stochastic processes from (Ω1,F1,P) to (Ω2,F2) with the
index set T . Then X and Y are called modifications or versions of each
other, if

∀t ∈ T : Xt = Yt P-almost surely
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Theorem A.31. (Kolmogorov-Chentsov)
Let X = (Xt)t∈[0,∞) be a real-valued process. For each t > 0 let there be
numbers α, β, C > 0 with

∀s, t ∈ [0, T ] : E (|Xt −Xs|α) ≤ C|t− s|1+β.

Then, there exists a modification X̃ = (X̃t)t∈[0,∞) of X, which has locally

Hölder-continuous paths of every order γ ∈ (0, β
α

).

Proof. see [K], Page 432-434.

Theorem A.32.
There exists a probability space (Ω,F ,P) and a Brownian motion B on
(Ω,F ,P). The paths of B are almost surely locally Hölder-γ-continous with
γ < 1

2
.

Proof. Let T = [0,∞), Ωt = R and Bt = B(R) for all t ∈ T . Then, Ω = R[0,∞)

and B = B(R)⊗[0,∞) holds. Define Bt := πt as the t-th coordinate function
and B := (Bt)t∈T .

For every t ∈ T define Pt := N0,t with N0,0 = δ0.
From N0,t ∗ N0,s = N0,t+s it follows that Pt ∗ Ps = Pt+s and, therefore, by
Lemma A.28, that κt(x,A) := Pt(A−x), t ∈ T defines a translation invariant
Markovian semigroup.
Hence, Corollary A.26 together with setting µ = δ0 gives the unique existence
of a probability measure Pδ0 on (Ω,B) for which

Pδ0 ◦ π−1
J = δ0 ⊗

n−1⊗
k=0

κtk+1−tk

holds. For every A ∈ B(R) and each t ∈ T it follows that

Pδ0Bt(A) = Pδ0(Bt ∈ A) =

∫
κt(x,A)δ0(dx) =

∫
N0,t(A−x)δ0(dx) = N0,t(A),

hence, that B0 ∼ δ0, which implies B0 = 0 Pδ0-almost surely, and Bt ∼ N0,t,
for t > 0. Furthermore, from Theorem A.29, we see that the process (Bt)t∈T
on (Ω,B,Pδ0) has stationary and independent increments and additionally
that Pδ0Bt−Bs = Pt−s = N0,t−s holds, for t > s. This can be written as

Pδ0Bt−Bs = N0,t−s =
√
t− s N0,1 =

√
t− s P1 =

√
t− s Pδ0B1

.

For n ∈ N define Cn := E(B2n
1 ) = (2n)!

2nn!
<∞, which are the 2n-th moments of

the standard normal distribution N0,1. Then, for every n ∈ N, it holds that

E
(
(Bt −Bs)

2n
)

= E
(
(
√
t− s B1)2n

)
= Cn|t− s|n.
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Let n ≥ 2 and γ ∈
(
0, n−1

2n

)
. From Theorem A.31 we get the existence of a

version of B with paths that are locally Hölder-continuous of order γ. Since
all continuous versions of a process are equivalent, B is Hölder-continuous of
order γ for every γ ∈

(
0, n−1

2n

)
and each n ≥ 2, hence for every γ ∈

(
0, 1

2

)
.

Remark. The d-dimensional Brownian motion is constructed as d-tuple of
one dimensional, independent Brownian motions on the probability space
(Ω{1,...,d},F⊗{1,...,d},

⊗n
i=1 P), where

⊗n
i=1 P denotes the unique product mea-

sure for a finite family of σ-finite measures (see Theorem A.17).

Remark. Parts of this construction, namely, everything except the continuity
of the paths, holds for any family of probability measures (Pt)t∈T with the
property Pt ∗Ps = Pt+s, for all s, t ∈ T . The Normal, Gamma, Cauchy, Bino-
mial, negative Binomial and Poisson distribution have this property (see [K],
Page 291), and therefore that these distributions omit a similar process. In
particular, the existence of the Poisson process is clear from this construction.



Fourier Transform and
Characteristic Function

Definition A.33.
Let µ be a probability measure on Rn. The characteristic function or
Fourier transform f : Rn → C of µ is defined by

f(ξ) =

∫
Rn

ei(ξ,x)dµ(x).

Theorem A.34.
If µ and ν are measures on Rn with the same Fourier transform or charac-
teristic function f : Rn → C, then µ = ν.

Proof. see [D1], Page 303.

Lemma A.35. (Bôchner)
A continuous function f : Rn → C is the characteristic function of a Borel
probability measure P on Rn, if and only if f is positive semidefinite and
f(0) = 1.

Proof. see [Ka], Page 377.

Lemma A.36. (Lévy inversion formula)
Let (Ω,F , µ) be a probability space, X : (Ω,F , µ) → (R,B(R)) a random
variable with distribution P and Fourier transform φP. For all a, b ∈ R, with
−∞ < a < b <∞, it holds that

lim
c→∞

c∫
−c

e−iat − e−ibt

2πit
φP(t)dt = P(a < X < b) +

P(X = a) + P(X = b)

2
.

Proof. see [A]
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Theorem A.37. (Tonelli’s theorem)
Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be σ-finite and let f : Ω1 × Ω2 → [0,∞] be
a F1 ⊗F2-measurable function or f ∈ L1(Ω1 × Ω2,F1 ⊗F2, µ1 ⊗ µ2). Then,∫

fd(µ1 ⊗ µ2) =

∫ ∫
f(x, y)dµ1(x)dµ2(y) =

∫ ∫
f(x, y)dµ2(y)dµ1(x)

holds and
∫
f(x, y)dµ1(x) is defined for µ2-almost all y and

∫
f(x, y)dµ2(y)

for µ1-almost all x.

Proof. see [D1], Page 137.



Convex Geometry and Related
Theorems

Theorem A.38.
Let H be a Hilbert space with inner product 〈·, ·〉 and W ⊂ H be a closed
subspace. Then,

∀z ∈ H ∃! x ∈ W ∃! y ∈ W⊥ : z = x+ y,

where W⊥ := {w ∈ H : 〈w, v〉 = 0 ∀v ∈ W}.

Definition A.39. (Orthogonal projection)
Let H be a Hilbert space with inner product 〈·, ·〉 and W ⊂ H be a closed
subspace. The orthogonal projection PW onto W is defined as the map

PW : H → H

z 7→ x,

where x is as in Theorem A.38.

Remark. Let u ∈ RM and W := span{u}. We define rank-1 orthogonal
projections as u⊗ u := PW . We have that

∀x ∈ RM : (u⊗ u)(x) = 〈u, x〉u.

Lemma A.40.
Let W be an n-dimensional subspace of RM and let g be the standard Gaus-
sian random vector in RM . Then, PWg is the standard Gaussian random
vector in W .

Proof. Let {f1, ..., fn} be an orthonormal basis in W . Then, we can extend
this basis with Gram-Schmidt to an orthonormal basis {f1, ..., fM} in RM .
Let now gi, i = 1, ...,M , be standard Gaussian random variables. Then, the
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standard Gaussian vector in RM can be written as g =
∑M

i=1 gifi.
For the orthogonal projection PW we have

PWg = PW

(
M∑
i=1

gifi

)
=

n∑
i=1

gifi,

which is the standard Gaussian vector in W .

Theorem A.41. (Dual Sudakov minoration)
Let (gi)i=1,...,n be the standard Gaussian vector on RM . Let T be a symmetric
convex body in RM with elements t = (ti)i=1,...,M ∈ T and X = (Xt)t∈T be a

Gaussian process on RM defined by Xt =
∑M

i=1 giti.
Let T ◦ := {x ∈ RM : ∀y ∈ T : 〈x, y〉 ≤ 1} be the polar of T and denote
by N(A,B) the number of translates of the set B by elements of the set A
necessary to cover A. Then

sup
ε>0

ε
√

logN(BM
2 , εT

◦) ≤ CE sup
t∈T
|Xt|.

Proof. see [L-T], page 82.

Remark.

(i) To apply this theorem to the ε-Entropy of BM
2 in RM w.r.t. some norm

‖ · ‖ and corresponding unit ball BM note that

N(BM
2 , εB

M) = N(BM
2 , ‖ · ‖, ε).

(ii) For a convex body K ⊆ RM , i.e., K is a convex and compact set with
nonempty interior, and a subspace E ⊆ RM the following holds

(K ∩ E)◦ = PE(K◦)

(iii) In Banach space X = (RM , ‖ · ‖) with unit ball BX we have

B
X* = {y ∈ RM : ∀x ∈ BX : 〈x, y〉 ≤ 1} = (BX)◦.

So the unit ball of the dual space X* is the polar body of BX , (BX)◦.
This can be seen by the Riesz representation theorem.

Theorem A.42. (Subgaussian tail estimate)
Let (αi)i∈N, αi ∈ R for all i ∈ N, and let (εi)i∈N be a sequence of independent
Rademacher random variables, i.e., taking values in {−1, 1} with probability
1/2 each. Then for every t > 0 we have

P

(∣∣∣∣∣∑
i∈N

εiαi

∣∣∣∣∣ > t

)
≤ 2 exp

(
−1

2

t2∑
i∈N α

2
i

)
.
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Proof. see [L-T], page 92.

Lemma A.43.
Let Zi, i = 1, ...,M , be independent folded standard normal distributed
random variables on R+, i.e., Zi = |Xi| with Xi ∼ N (0, 1) for i = 1, ...,M
and independent. Then, there exists a constant C > 0 such that

E max
i=1,...,M

Zi ≤ C
√

logM .

Proof. Let Z := maxi=1,...,M Zi. Then we have

exp(tEZ)
Jensen

≤ E exp(tZ) = E max
i=1,...,M

exp(tZi) ≤
M∑
i=1

E exp(tZi).

The moment generating function of a folded standard normal distributed
random variable Zi is

E exp(tZi) = 2et
2/2

(
1

2
− 1

2
erf

(
−t√

2

))
≤ 2et

2/2,

where erf(t) := 2√
π

∫ t
0
e−x

2
dx is the error-function.

Using this, we get
exp(tEZ) ≤ 2Me−t

2/2,

which we can rearrange as

EZ ≤ log 2

t
+

logM

t
+
t

2
.

With the choice of t =
√

2 logM we see that

EZ ≤
√

2
√

logM +
log 2√
2 logM

=
√

2
√

logM + log 2

√
logM

logM
,

which we further estimate by the inequality logM ≥ log 2, for all M ≥ 2, as

≤
√

2
√

logM +
√

logM = (
√

2 + 1)
√

logM .

Lemma A.44.
Let Zi ∼ N (0, 1), i = 1, ...,M , independent. Let a1, ..., aM ∈ R \ {0}. Then,
for all j = 1, ...,M ,

M∑
i=1

aiZi
D
=

(
M∑
i=1

a2
i

)1/2

Zj.
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Proof.
We have aiZi ∼ N (0, a2

i ) and therefore
∑M

i=1 aiZi ∼ N (0,
∑M

i=1 a
2
i ).

On the other hand we know(
M∑
i=1

a2
i

)1/2

Zj ∼ N

(
0,

M∑
i=1

a2
i

)
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