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Chapter 1

Introduction

In this thesis, we will take a look at two famous and deep theorems about
stochastic processes, namely the Kolmogorov existence theorem and Tala-
grand’s majorizing measure theorem, and applications of these in different
fields of mathematics, i.e., stochastic processes, Banach space theory and
asymptotic convex geometry.

We start our investigations in Chapter 2 with a rather general version of
Kolmogorov’s existence theorem. In particular, we will consider measurable
spaces, so-called Borel spaces. We will show for a (possibly uncountable)
family of Borel spaces and a projective family of probability measures that
there exists a unique probability measure on the product space of the family
of Borel spaces such that its family of finite-dimensional distributions are the
given projective family of probability measures. (Theorem 2.28)

We provide an application of this theorem to the theory of stochastic
processes, to be more precise, we show the existence of the Brownian motion
(see appendix). Throughout this chapter and the appendix we will heavily
rely on the concept of stochastic kernels, which will allow us to consider this
problem in a very general manner. As a result we will see that there exist
various processes similar to the Brownian motion.

The Kolmogorov existence theorem goes back to Kolmogorov’s ground-
breaking work ” Grundbegriffe der Wahrscheinlichkeitstheorie” from 1932 [Ko].
It is worthwhile noting that sometimes this theorem is referred to as Daniell-
Kolmogorov existence theorem. This is due to the fact that Percy J. Daniell,
in essence, already showed this theorem in a paper written in 1919, which
is part of a 10 papers series in which he developed his theory of Daniell-
integrals. Yet, Kolmogorov’s result is more general, since it allows index sets
of arbitrary cardinality, whereas Daniell’s is only for denumerable ones. In
1921, Daniell wrote some work on Brownian motion calling it ”dynamic prob-
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ability”. His early works were also a starting point to Wiener’s investigation
on Brownian motion.

In Chapter 3 we derive two results of local Banach space geometry. We
show for a real Banach space (X, || -||) that || - ||, 1 < p < 2, is of negative
type, if X is linear isomorphic to a subspace of L,(€2,P). We also show that
if |-]|7, 1 < p < 2, is of negative type, then there exists, for each 0 < 5 < p, a
probability space such that X is linear isomorphic to a subspace of Lg(£2, P).
In the case of X being infinite dimensional, the Kolmogorov existence theo-
rem will aid us in proving the second part. This part is based on Applications
de U'étude de certains formes linéaires aléatoires au plongement d’espaces
de Banach dans les espaces L, by J.Bretagnolle and D.Dacunha-Castelle
[B-D]. We follow the presentation of J.Prochno in Charakteriserungen von
Teilrdumen von L, [P].

We will turn our attention to Talagrand’s and Fernique’s majorizing mea-
sures theorem in Chapter 4. This theorem gives us sharp upper and lower
bounds for the supremum of stochastic processes with subgaussian tails.

By this theorem, the boundedness of a subgaussian process is character-
ized, since, due to H.J. Landau and L.A. Shepp in 1970 [L-S], the bound-
edness of a stochastic process (X;)ier is equivalent to the boundedness of
Esup;cp | X¢|. Furthermore, the boundedness of E sup,cp | X;| is equivalent to
the boundedness of E sup,. X;, which can be easily seen by the inequality

Esup X; < Esup | X;| < E|X,,| + E2sup X,

teT teT teT

for any ¢y € T, and has the advantage that Esup,.p(X: +Y) = Esup,cp Xy
holds, for any subgaussian random variable Y.

In 1967, R.M. Dudley showed in [D2] that the boundedness of a Gaussian
process with a pseudometric space (T, d) as index set, where d is the canonical
distance induced by the associated process of covariances (we will see what
this exactly means), is implied by the boundedness of the Dudley entropy

bound, i.e., by
/ v/log N.de < o0,
0

where N, is the e-entropy of T' in the metric d. Yet, this fails to character-
ize the boundedness of the stochastic process, since the e-entropy does not
account for possible lack of homogeneity in (T, d) [T2].

The possible solution of this was established in 1975 by X. Fernique [F].
He proved that the boundedness of the process follows from the boundedness
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sup
teT / t 5

where p is a probability measure on 7" and B(t, ) is the e-ball centered at ¢ in
the metric d, and conjectured that this mlght characterize the boundedness.

In 1987, Michel Talagrand showed in [T2] that this conjecture is indeed
true and elaborated the topic further in a series of papers, which can be
tracked down in the references of [T1].

We will be solely concerned with his approach to the proof of the ma-
jorizing measures theorem from his work: Majorizing Measure: The Generic
Chaining [T1]. Astonishingly, the proof of this theorem is based upon a
geometric argument, namely, regrouping nearly identical random variables
of the stochastic process, which can be expressed through certain increasing
sequence of partitions of the index set 1. This is elaborated by the so-called
”generic chaining”-argument, which goes back to at least Kolmogorov [T1],
and which we will see in detail. Furthermore, we will introduce a construc-
tion scheme for such sequences of partitions.

of

Mainly based upon the works Almost Orthogonal Submatrices of an Or-
thogonal Matriz [R1] and Contact Points of Conver Bodies [R2] by Mark
Rudelson, we will derive in Chapter 5 an application of the majorizing mea-
sures theorem to asymptotic convex geometry. We will prove the approxima-
tion result that for each n-dimensional convex body B and each ¢ > 0 there
exists another n-dimensional convex body K such that the Banach-Mazur
distance of B and K is less or equal than 1+¢ and that K and B are having
less then C(e)nlogn contact points. Furthermore, it will be shown that, if
K is embedded in R"™ such that B} is it’s John’s ellipsoid, then K induces
a John’s decomposition of the identity operator in R™ by its contact points
with By.

The classical theorem on John’s decomposition, established by Fritz John
in 1948 [J], was the starting point to this theorem. It was later, namely in
1992, refined by Keith Ball [Ba]. Yet, it could only bound the number of
contact points by n(n + 1)/2, for symmetric convex bodies, and n(n + 3)/2,
for general ones, respectively.

It is due to a series of papers by Mark Rudelson that this could be low-
ered significantly. In 1995 to 1997, in a first step, he could give the bound
C(e)n(logn)® in [R2] and [R3]. Two years later, he was able to improve
the bound to C(g)nlogn(loglogn)? before realizing, that he could actually
bound it by C(g)nlogn, which was given in [R1] and will be our main con-
cern.
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In 2009, N. Srivastava, D. Spielman and J. Batson managed to do even
better. In [S-S-B], they showed that, for symmetric convex bodies, the bound
can be lowered to C'(e)n. Moreover, they proved that there exists a convex
body K for each convex body B such that their Banach-Mazur distance
is smaller than 2.24 and the number of their contact points is bounded by

C(e)n.



Chapter 2

Kolmogorov Existence
Theorem

In this chapter, we will provide a proof for the Kolmogorov existence theorem
for a certain class of measurable spaces, so-called Borel spaces. First, we need
to introduce definitions and notational devices in order to be able to address
this problem and work out the proof in a clean manner.

Definition 2.1. (Stochastic process)
Let (21, F1,P) be a probability space, (€22, F2) be a measure space and T be
an index set. A stochastic process X is a function

X: Ql X T — QQ, (w,t) — Xt<W),
such that X; : Q0 — Q9 is Fj-Fo-measurable for each t € T.

Remark. To emphasize the view of the stochastic process X as family of
random variables we will also write X = (X})er.

Definition 2.2. (Product space)
Let (;)ier be an arbitrary family of sets. Then, by the product space,

Q = X, we denote the set of all maps
teT

w:T — U Qt
ter
with the property that w(t) € Q, for allt € T'.

Notation. If J C T, then Qj := X, ;€;, and if T = Ny and 4,5 € T', then
Q. jy = Xi:i Q. will be our notation of choice. In the case that there

-----

exists an {2y such that 2, = € for all t € T', we write Q = X, Qo = QOT,

,,,,,

5
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Definition 2.3. (Coordinate functions)
Let t € T, then m; : Q — Q, w — w(t) is the t-th coordinate function.
For J C J' C T the mapping

!/
’H'inJ/—)QJ, w»—>w|J

is called a canonical projection.
In the case that J' = T we write 7;. Additionally, 7er will be used for the
projection from €2; to €2;.

Definition 2.4. (Product o-algebra)
Let (£, F;), t € T\, be measurable spaces. The product o-algebra

]:::®]:t

teT

is the smallest o-algebra on €2 such that for all ¢ € T" the coordinate function
m; is F-JFp-measurable, i.e.,

F=o(m,t€T):=o(r;(F),teT).

Notation. As for product spaces the notation will be F; := ®j€J FiitJCT,
and Fp; gy = Qi_, Fi if T = Ny. If there exists a F, such that F, = J

77777

for all t € T, we will use F = ®tET Fo = J‘L‘6®T, Fy = ®j6] Fy = ]:§§J and
Flidy = 1 Fo= ]:6@“ """ 7} respectively.

Now we introduce the concept of projective families of probability mea-
sures. As we will see this is central to our investigation, since this criterion
tells us how tightly a family of probability measures has to be interlocked in
order to induce the existence of some stochastic process.

Definition 2.5. (Joint distribution)
Let (Q;, F;,P;), 7 € J={1,...,n}, n € N, be probability spaces. The joint
distribution P; is defined by

VA, €Fj, jeJ P, <>< Aj> =P(A € Fr, .., Ay € F).

jedJ

Definition 2.6.
Let T be an arbitrary index set. Then by E(T) := {J C T : J finite}, we
denote the set of all finite subsets of T.
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Definition 2.7. (Projective family)
The family (P;)jeg(r)y of probability measures on (2, F;) is called a pro-
jective family, if

VLCJ; L,Je&(T): Pyo (ﬂ'i)_l =P;.

P, is called a finite-dimensional distribution for J € £(T) and is defined
by

From the next corollary it follows that a stochastic process as defined
above always admits a projective family of probability measures which are
just the finite-dimensional distributions associated with the process. We will
see that the Kolmogorov existence theorem tackles the opposite direction
of this corollary, namely, that a prescribed projective family induces the
existence of a stochastic process on some probability space.

Corollary 2.8.
Let X be a stochastic process from (4, F1,P) x T to (g, F3). Then the
family (Py) ece(r) of finite-dimensional distributions is projective.

Proof. Let J,L € £(T), L C J and define A := X, A, where A, € F; for
all £ € L. For the joint distribution of (X;)sey, it follows that

Jeer, € A)

= P(Wl € Ql : (X] Cd1))je] € Ax QJ\L)
=P;(Ax QL) = (]PJ °© (WJ)_l) (A).

PL(A) = P(wl € Ql : (Xg(u)l

—_— =

]

In order to prove results in probability theory concerning o-algebras, one
usually resorts to generators of the aforementioned o-algebras. Here, we
will introduce the cylinder sets. A specially constructed intersection of these
cylinder sets, which, as we will see is, an algebra, will then generate the
product o-algebra.

In the proof of the Kolmogorov existence theorem we will make use of this,
as this will guarantee that the requirements for Carathéodory’s extension
theorem (Appendix, Theorem A.12) are satisfied.

Definition 2.9. (Cylinder sets)

Let T be an index set and J C T. For each A € F; the preimage 7' (A) C
Q= Xep S of the canonical projection 7; from € to €2, is called a cylin-
der set with basis J. The set of all cylinder sets with Basis J is denoted by
ZJ.
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If A= @Q,c; A, for some A; € F;, then 77 (A) is called a rectangular
cylinder with basis J. We write Z% for the set of all rectangular cylinders
with basis J. By Z we denote the set of all cylinder sets with finite basis
and by Z% the set of all rectangular cylinder sets with finite basis, i.e.,

z=\J 2, 2= 2/
Je&(T) JEE(T)

Lemma 2.10.
Every Z;, J C T, is a o-algebra and Z is an algebra.

Proof. By definition Z;, J C T, is a set consisting of preimages of the ele-
ments of a o-algebra F;. Since the preimage operation preserves the prop-
erties of a o-algebra, Z; is a o-algebra since F is one.

Now, we show that Z is an algebra:

(1) Since, for each J C T, Z; is a o-algebra, Q € Z; for all J C T. By the
definition of Z it follows that 2 € Z.

(2) Let now B € Z. Then there exists some finite J € £(T') such that
B € Z;. Since Z; is a o-algebra we have B¢ € Z; and hence that
Bce Z.

(3) To show that Z is closed under finite unions let B, B’ € Z. Then there
exist J, K € E(T) such that B € Z; and B’ € Zk. Define L := JUK.
L is clearly finite. Because mx = m% o 7y holds, we get that

Z = md(F) = ! () (F)) € m(Fu) = 2,

and analogously that Z; C Z;. Hence, Z; U Zx C Z; holds and
there exists a finite L € £(T') such that BUB' € Z;, C Z.

]

Lemma 2.11.
The cylinder sets Z generate the product o-algebra F, ie., 0(Z) = F.

Proof. First, we prove the inclusion F C o(Z).
For all ¢t € T it holds that m; = ﬂft} o myyy and therefore

~1
Zt = 7Tt_l("t%) = W@i ((717?}) (]:t)> = W&i(]_.{t}) = Z{t} C ZC O(Z)
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holds. Since F = o(m; '(F;),t € T) one sees that F C o(Z) is true.

To show the second inclusion, o(Z) C F, let J € E(T). Since 7y is F-
Fy-measurable (see Lemma A.1 from the appendix) it holds that Z; =
7' (Fy) C F. It follows that

z=|J z,¢cF
JEE(T)

and consequently that o(Z) C o(F) = F. Hence, 0(Z) = F. O

Lemma 2.12.

The set Z% of all rectangular cylinder sets with finite basis is a generator
of the product o-algebra F, i.e., o(Z%) = F, and is closed under finite
intersections.

Proof. Since Z C Z, it follows with the second part of Lemma 2.11 that
o(ZR) C F.

For the other inclusion we observe that Zy; = Zﬁ} and Z{f} C Z% for all
t € T, and therefore, by the first part of Lemma 2.11, that F C o(Z%).
Hence, F = o(Z%).

Let now A, B € Z#, then there exist J,K € £(T) and A} € F;, j € J,
and By, € Fi, k € K, such that for A} := X, ; A} and Bj := Xy By, it
holds that 7;'(A}) = A and 7' (B}) = B. It follows that

ANB =, (A)) Ny (Bie) = w05 (A X Q) N 705 (Bie X Q)
= 70k (A X Qo) N (Bl x Qi) = 70 (Al X Bieys X Clag),

where ' = X (A;NB)) with AN B, € F;, foralli e JNK.
i€JNK

Therefore, AN B € Z§ ;. and consequently AN B € Z%, giving us that Z
is closed under finite intersection. O
Lemma 2.13.
The set B
z=J z
J tount.

is a o-algebra.

Proof. Since Z; is a o-algebra for every subset of T', the first two steps of
the proof are the same as (1) and (2) from Lemma 2.10. It remains to show
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the closure under countable union.

Let B; € Z, % € N. Then there exist countable J; € T" such that B, € Z;,,
for all 7 € N. Define L := | J,.y/Ji- L is countable since it is the countable
unions of countable sets.

Following (3) from Lemma 2.10 one sees that Z; C Zp, for all i € N and
consequently that (J,.y £27, € Zr. This means that there exists a countable
L C T such that

UBiGZL C U Zng

€N JCT
J count.

As a next step, we will establish the concept of transition kernels, which
will describe the transition probability of some state of a process at time
t; to another state of the process at time ¢y, and therefore generalizing the
concept of transition matrices for Markovian processes.

In other words, transition kernels will give an answer to the question of
how to describe a diffusion process which transitions the unit mass in some

point w € € into a mass distribution on ', prescribed by some measure
A P(w, A), where A € F.

Definition 2.14. (Transition kernel/ Stochastic kernel)
Let (2, F1) and (€9, F2) be measure spaces. The map « : ) x Fo — [0, o0]
is called a (o-)finite transition kernel from Q; to Qy if

(i) wy = K(wy, Ag) is Fi-measurable for all Ay € Fy, and
(ii) As — K(wq, A) is a (o-)finite measure on (2, F3) for all wy € Q.

If for all wy € Q4 the measure in (ii) is a probability measure, then « is called
a stochastic kernel.

Notation. We write k(dws) := k(wq, dws) if a kernel & is independent of w;.

Corollary 2.15.
It suffices to claim the Fj-measurability of wy — k(wy, Az) only for £ in (i) of
the definition of transition kernels, where £ is a generator of F; that is closed

under finite intersections and such that there exists a sequence (E,,),en with
E,e & and E, 7.

Proof. Showing that D := {Ay € F : wy — k(wi, Ay) is Fi-measurable} is a
Dynkin system is the only thing that has to be done here (for the definition
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of a Dynkin system see appendix, Definition A.2). From Dynkin’s theorem
(Appendix, Theorem A.3) it follows that 6(€) = o(€) = Fa.

Additionally, by & C D C F,, and therefore 6(€) C D C Fo, it follows that
D = F, = 0(€). The way £ was chosen guarantees with Lemma A.4 from
the appendix, that the kernel x is uniquely determined.

Therefore, we need to show that D is a Dynkin system.

(i) Let A", A € D with A C A". For fixed wy € €, by (ii) of the definition,
K(wy, A"\ A) is the measure of the set A’\ A w.r.t. the o-finite measure
corresponding to wy € €2;. It follows that

Vwy € Q¢ k(wy, A"\ A) = k(wy, A') — k(wy, A),

and therefore that k(- , A\ A) = k(- ,A")—k( -, A) is Fi-measurable,
because k( - ,A"), k( - ,A) are Fj-measurable. Hence, A"\ A € D.

(ii) Let A, € D, n € N, pairwise disjoint and let A := |, oy An. For fixed
wy € €y, it follows by the same argument as above and c-additivity
that

Vwy € Q1 k(wy, A) = k(wy, U A,) = Zﬁ(wl,An),

neN neN

and that k(- ,A4) =) k(- ,A,) is Fi-measurable, because it is the

countable sum of Fj-measurable functions. Hence, A = J, .y An € D.

(ili) Using the fact that £ C D and that there exists a sequence (E,,),en in €
with FE,, 1 s, we can define disjoint sets A; := E; and A,, .= E, \ F,_1
for n > 2. Clearly, J, oy An = Qa.

By (i), k( - A1) =k( - ,Ey)and k(- ,An) =k( -, E,)—k( -, En1)
are Fi-measurable for n € N. By (ii) it follows that

’i( : 792):’€< : 7UAH):ZH( : 7AN)

is Fi-measurable and therefore (), € D.

]

Lemma 2.16. (Product of kernels)

Let (€, F;), i = 0,1, 2, be measurable spaces and k1, k2 be finite kernels from
(Qo, Fo) to (21, F1) and from (Qg x Qy, Fo @ Fy) to (Qa, F2), respectively. If
we denote by

(K1 ® K2)(wo, A) 1=//]lA(wlawz)ffz((Wanl)adwz)’fl(woadwl),

Q1 Q2
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with wg € Qg and A € F; ® F», the product of the kernels of xk; and ko,
then k1 ® ko forms a o-finite kernel (not necessarily finite) from (€, Fo) to
(1 x Qq, F1 ® F»), which is stochastic if k; and ks are stochastic.

To prove this lemma, we require another result.

Lemma 2.17. Let x be a finite transition kernel from (21, Fy) to (Qq, F2)
and let f:Q; x Qy — [0, 00] be F; @ Fo-B([0, 00])-measurable. Then

Ip: — [0,00], wyq+— /f(wl,u@)/i(wl,dwg)
Qo

is well-defined and F;-measurable.

Proof. First, we show that I;(w;) is well-defined.

Define i, : Qo — Q1 X Qs by i, (W) = (w1, wz) with some fixed w; € .
Since 7901, = idg, and w04, = w;lg, holds, it follows that i,,, is Fa-Fo- and
Fo-Fi-measurable. We get that iy, is Fo-F; @ Fy-measurable (Lemma A.1
from the appendix).

Together with the F; ® Fo-B([0, 0o])-measurability of f it holds that f oy,
is Fo-B([0, oo])-measurable for every w; € §2; and consequently that I is
well-defined.

To show that I is Fj-measurable define g := 14,x4,. Then it holds that

() = [ Lapsasnwa)nlon dew) = Lay0)x(n, 42
Qo
is F-measurable, because 1 4, (w1) and k(wq, Ag), for every Ay € Fy, are Fi-

measurable.
Define D :={A € F, ® Fy: I1, is Fi-measurable}. D is a Dynkin system:

(i) Obviously ©; x Qs € D.

(ii) Let A, B € D with A C B, then we have that Iy, , = I1, — I1, holds
because r is finite and 1z 4 = 15 — 14 holds. Thereby B\ A € D.

(iii) Let A, € D, n € N, pairwise disjoint and A := J, .y An. By the fact
that 14 =1y, _ a, = > nen La,, it follows that Iy, = > 11, and
therefore that A € D.
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By the definition of D one sees that the set of rectangular cylinders Z is
contained in D. From Lemma 2.12 we know that Z% is a generator of the
product o-algebra F; ® F» and closed under finite intersections. By Dynkin’s
theorem (see Appendix, Theorem A.3) it follows that D = F; @ Fs.

Hence, 1,4 is Fj-measurable for each A € F; ® F;. It follows for every step
function ¢ that [, is Fj-measurable. Let now (f,)n,en be a monotonously
growing sequence of step functions. By the monotone convergence theorem
(see Appendix, Theorem A.5), we get that I;(w;) = lim, o Iy, (w1), for
every wy € {1y, and that I; is measurable, since it is the limit of measurable
functions. O

Having shown this lemma, we can now go over to show the result about
products of kernels.

Proof. (Product of kernels)
Let A € F1 ® F». By Lemma 2.17, it follows that the map

gA:<a@,w1>F»L/"nA«uhua)mzaam,aq>,dw2)
Qo

is well-defined and measurable w.r.t F; ® F». Again, by Lemma 2.17, the
map

wo > (K1 ® Ka)(wo, A) = /gA(wo,wl)m(wo,dwl)
951

is well-defined and JFy-measurable.

Let now A, € F1 ® F, n € N, be pairwise disjoint and A := |J,cy An-
For fixed wy, we have that

(/<;1®/12)(w0,A)://]lA(wl,wg)/ﬁ(wg,dwl)ﬁg((wg,wl),dwg)

Q1 Q2

//MMM%MMWMMMM%MMM)

neN
Q1 Qo

//Z]IA (w1, wo) k1 (wo, dwy) Ko ((wo, w1), dws),

O Qo neN

and by the monotone convergence theorem (Appendix, Theorem A.5) that

— Z//]lA wr, wa)kr (wo, dwr o ((wo, wi), dws) = Y (K1 @ ka)(wo, Ap)-

nENQI Qs neN
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Therefore, A — (k1 ® Ka)(wp, A) is o-additive and, hence, a measure.

For wy € Qp and n € N define A, = {w1 € Q1 : kKa((wo,wr),a) < n}.
Since ko is finite, it holds that |J, _n Awyn = 21, for every wy € €. Further-
more, it holds that

(K1 @ o) (w0, Ay X Q) = / / L, (1) Ly (o) (o, deoy Yo (w0, w1 ), o)
Q1 Qo

neN

= K1 ((U(), Awo,n)’{@((w(h wl)) QQ)

< K1(wo, Awgn) - n < 00,

where the last inequality follows from the finiteness of x;.
Therefore, (k1 ® kg)(wo, - ) is o-finite and k1 ® Ky a transition kernel.

Let wy € Qg still be fixed. Then, xo((wo, - ),$22) is not necessarily bounded,
even if ko is a finite kernel. Together with

(K1 ® Ka)(wo, 1 x Qy) = /il(OJO,Ql)/1Q2(W2)R2((WO,W1),dW2),

Qo

one sees that (k1 ® Kg)(wp, - ) is not necessarily finite and consequently the
kernel k1 ® ko is not necessarily finite.

If k1 and Ky are stochastic kernels, kq(wp, 1) = 1 and ke ((wo, w1), ) =1
holds. For fixed wy it follows that

(k1 ® Ka)(wo, 1 X Q2) = K1(wo, ) - Ka((wo, wi), o) =1
and hence that k1 ® k9 18 a stochastic kernel. O

Remark. For sets of the form A = A; x Ay, Ay € F1, Ay € F>, the product
simplifies to

(K1 ® Ke)(wo, Ay X Ag) = /H2((W07w1)7A2)ff1(w07dw1)-
Aq

If the kernel x; is independent of wy, it is a probability measure on (€2, F7)
and the product k1 ® kg is a probability measure on (21 X o, F1 ® F3):

(K1 ® K2)(A) 3://lA(wljwz)@((WOawl)adw2)/€1(dw1),

Q1 Q2

where A € Fi®F,. If, additionally, ks is independent of wy, k1 ® ko simplifies
to the ordinary product measure of k; and k».
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Remark. The definition of the product of two kernels can be extended induc-
tively to more than two factors in the following way:

n n—1
®/<;j = <® /<;j> & Kn,
j=1 j=1

----------

this product is associative, it follows, for all k = 1,...,n — 1, that

n k n
Q- (@) (& n).
j=1 j=1 j=k+1
In the proof of the Kolmogorov existence theorem, we will need that a
random variable Y, together with a sub-o-algebra F, induces the existence of

corresponding stochastic kernels. These kernels will be called regular versions
of the conditional distribution, or in short: regular conditional distributions.

First, consider a random variable X with values in a measure space
(Qg, F3). For A € F; we can express the conditional probability under X
as E(A|X) (see appendix, Definition A.9). Now let Z be a o(X)-measurable
random variable. By the factorization lemma (Appendix, Theorem A.8) it
follows that there exists a F» — B(R)-measurable map ¢ : {2 — R with
e(X) = Z. If X is onto, then ¢ is uniquely determined and we write
Z o X7t = (even if X~! does not exist).

Thereby, we can explain the conditional expectation E(A|X = z) of A under
X =z, for each A € Fq, as in the next definition and furthermore such that
E(A|X) =E(A|X = z) holds on {X = z}.

Definition 2.18. (Conditional expectation)

Let Y € £LY(Q, F1,P) and let X : (2, F;) — (29, F3). The conditional
expectation of Y given X = z, in short E(Y|X = x), is defined as the
function ¢ from the factorization theorem (Appendix, Theorem A.8) with
Z = E(Y|X) as explained above.

Additionally, we define the conditional probability of A € F; given X =z
as P(A|X =z) = E(14]X = z).

Definition 2.19. (Regular conditional distribution)

Let Y be a random variable from (Qq, F;,P) to (Qy,F2) and F C F; a
sub-c-algebra. A stochastic kernel ky r from (4, F) to (€, F2) is called a
regular version of the conditional distribution of Y given F, if it holds
that Ky (w1, B) = P({Y € B}|F)(w;) for P-almost all wy € Q and for every
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B e F,.

Let now F = o(X), where X is a another random variable. Then the kernel
(wl, B) — /<Jy7x(wl, B) = P({Y € B}|X = iL') = KYJ(X)(Xfl(wl),B) is called
a regular version of the conditional distribution of Y given X.

Theorem 2.20. (Regular conditional distribution)
Let Y be a random variable from (€, F1,P) to (R,B(R)) and F C F; a
sub-o-algebra. Then there exists a regular version rky r of the conditional

distribution P({Y € - }F).

Proof. We are going to construct a measurable version of the distribution
function of the conditional distribution of Y by defining its values on Q (up
to a Null set) and then extending this to R.

Let F(r,-) be a version of the conditional probability P(Y € (—oo,r||F) for
r € Q. For r < s it holds that Tjye(—ooy} < Lfye(—oo,s}, and therefore, by
the monotonicity of the conditional expectation (Appendix, Theorem A.10),
that there exists a Null set A, ; € F and that following holds

Vw, € Q\ As 0 F(rywr) < F(s,wy).

From the dominated convergence theorem for conditional expectations (Ap-
pendix, Theorem A.10) it follows that there exist Null sets B, € F, r € Q,
and C € F such that for all w; € 2\ B, it holds that

1 1
lim F (7’+ —,wl) = lim P <Y € <—oo,r+ —] |]—")
n—r00 n n—00 n

1
= lim P (Y — — € (—o0,7] |]:>
n

=P(Y € (—o0,r]|F)
= F(r,w),

since Y € L(Q, F,P) and Y — % — Y, and consequently that

1
Yw, € Q\ B, : lim F(r—i——,wl) = F(r,w).
n

n—oo
Furthermore, we have that

Vw; € Q\C: lim F(—n,w;) =0  and lim F(n,w;) = 1.

n—oo n—oo

Set now N := Ume(@ AU Ure@ B, UC and for all w; € O \ C define

F(z,w) :=inf{F(r,w): reQ, r> z}.
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Since F(-,w;) is monotonously growing and right-continuous, F'(-, w;) is also
monotonously growing on R \ @Q and right-continuous on Q. Consequently,
F(-,w,) is a distribution function for every w; € Q; \ N.

For the remaining w; € N set F(-,wl) = Fj, where Fp is an arbitrary but

fixed distribution function.

We proceed by defining (wy,-), for every wy € {11, as the measure corre-
sponding to the distribution function F(-,w;) on (24, F).
For r € Q and B := (—o0, 1]

w1 = /ﬂ](wl, B) = ]P)(Y S B‘./T'-)]l]\]c(wl) + Fg(r)]lN(wl) (21)

is clearly F-measurable.

Since {(—o0,r] : 7 € Q} is a generator of B(R), which is closed under finite
intersections and contains the sequence (—oo, 7] T R, we get by Corollary 2.15
that the F-measurability holds for all of B(R). Hence, « is a stochastic kernel.

It remains to show that x is a version of the conditional distribution. For
AeF,reQand B = (—o0,r| it follows from equation (2.1) that

/WI, B)P(dwy) = /IP(Y € B|F)dP = P(AN {Y € BY).

As a function of B, both sides are finite measures on B(R), which coincide on
the generator {(—oo,7] : r € Q}. By the uniqueness theorem for measures
(Appendix, Theorem A.11) it follows that for every B € B(R) the equality
holds and therefore that P-a.s. x(-,B) =P(Y € B|F). Hence, k = ky r. [

Lemma 2.21.
Let (€, F:), i € Ny, be measurable spaces and let Py be a probability
measure on (g, Fy). Furthermore, let k;, ¢ € N, be stochastic kernels

77777777
..........

.....

Proof. Since Py is a probability measure on (£, Fy), we know from the re-
mark about stochastic kernels that PPy is likewise a probability measure on

7777777777777
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77777777

-----

where we have used that £, 1(wp, Q2,411) = 1 for every n € N.
By induction we get the above lemma. O

With the tools we have gathered so far, we are now able to show lonescu-
Tulcea’s theorem, which will be used to prove the Kolmogorov existence
theorem.

Theorem 2.22. (Ionescu-Tulcea)
Let the assumptions from Lemma 2.21 hold. Then, there exists a unique
probability measure P on (€2, F) such that

P(A X Q{k—H 77777 oo}) = Pk(A>,
for all k € Ny and A € ./T"{o ..... k}-

Proof. From Lemma 2.11 we know that the set of cylinder sets Z generates
the product o-algebra. Additionally we know by Lemma 2.10 that Z is
an algebra and therefore closed under finite intersections. By the uniqueness
theorem for measures (see Appendix, Theorem A.11) it follows that it suffices
to show the unique existence of a probability measure for Z.

We will show the existence: Define a function P on Z by

..........

.....

.....

= Pi(A) + Py(B)
= P(A X Q{k+1 77777 oo}) + ]P)<B X Q{lJrl ..... oo})a
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-----

P, is o-additive.

Since P is an additive function on the algebra Z, it is a content. If, ad-
ditionally, it holds that P is o-additive on Z, then P is a pre-measure. By
applying the Carathéodory extension theorem (Appendix, Theorem A.12), P
can be uniquely extended to a measure on Fyg . i}
Therefore it is necessary to show the o-additivity of P. Since o-additivity
and (-continuity are equivalent for algebras, we can show (-continuity of P
in order to proof this theorem. (For the definition of ()-continuity and the
lemma with the mentioned equivalence, see Appendix, Definition A.13 and
Lemma A.14).
Let Ag D A; D ... be a sequence in Z and define « := inf ey, P(A4,) > 0. We
need to show that -

() An #0.

n=0
W.lo.g. we can assume A, = A}, X Qg4
n > m we set

ny. For

..........

n

P (W0, -+ W) = ( ® ki) ((Woy oy Wi ), AL)

k=m-+1
and hy, := inf,>,, by We show inductively that there exists a p; € €,
1 € Ny, with

BP0, ey Pm) = Cv. (2.2)
Because A;, | C A}, X {41, it holds that

n+1
P (@0, oo wm) = () #a) (wo, oo i), ALy 1)
k=m+1
n+1

() #)(wo, .. wm), ALy X Qi)

k=m+1
n

= (X wr)(wo, .., wm), A))

k=m+1

= hm,n<W07 ...,wm)

IN

Therefore, we have hy,,,, | hy, for n — oo. The monotone convergence
theorem (Appendix, Theorem A.5) then implies

n>m n>m n>m

/ B dPy, = inf / hopndP,, = inf P,(A) = inf P(A,) "=’ a.
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By this, equation (2.2) is shown for m = 0. Assume now that (2.2) is true
for m € N, then, we get that

/herl(pOa o5 Pmis Wm+1)/€m+l(<p0> ceey pm)a dmerl)

== TL>II7’}L€,-1 hm+1,n(p07 ooy Pmy wm+1)’im+l((p07 sy )Om); dmerl)

n

= inf ( ® Kk)((ﬂ()? "‘7pmvwm—i-l)aA;L)’im—i-l((pOa "'7pm)7dw771+1)7

n>m+1
k=m+2

and, by the first remark about stochastic kernels, that

inf 1(f€m+1 &® ® /ik)((p077pm)7A;L)

n>m+
k=m+2

n

= inf () #r)((Po: s o). AL)

n>m+1
k=m-+1

= inf hm,n(p()a 7pm) - hm(POa 7pm)

n>m+1

A%

Q.

By induction we get that equation (2.2) holds for all m € Ny.
Let p := (po, p1,-.-) € Q. Our construction tells us

a < hm,m(pOa 7pm) = ]lA;n(p(h EE) pm>7
hence, p € A,, for all m € N. Thereby, it follows that

(A #0.
=0

]

As mentioned in the beginning of this chapter, we want to show the
Kolmogorov existence theorem for Borel spaces. The relevant definitions
and lemmas about these Borel spaces are given here.

Definition 2.23. (Isomorphism)

Two measurable spaces (€2, F;) and (g, F2) are isomorphic, if there exists
a bijective mapping ¢ : ; — s, such that ¢ is F;-Fy-measurable and ¢!
is Fo-Fi-measurable. ¢ is called an isomorphism between measurable spaces.
If, additionally, p; and pe are measures on (€21, F;) and (€29, F2), such that
to = p11 0 L, then @ is a measure space isomorphism and (4, Fy, y;) and
(Qg, Fa, p2) are called isomorphic.
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Definition 2.24. (Borel space)

A measurable space (€2, F) is a Borel space, if there is a Borel set B € B(R),
such that (Q, F) and (B, B(B)) are isomorphic.

Analogously, a measurable probability space (2, F) is a Borel space if (2, F)
and (B, B(B)) are isomorphic, for some B € By 1.

Corollary 2.25.
The product space (€23 xQy, F1®@F3) of two Borel spaces (€2, F7) and (g, F2)
is a Borel space.

Proof. Let (Qq,F1), (€2, F2) be Borel spaces. Then, there exist By, By €
B(R) and bijective ¢y : Q1 — By, s : Qs — By such that ¢y is F1-B(B;)-,
o1t is B(By)-Fi-, @y is Fo-B(By)- and @, is B(Bs)-Fa-measurable.

Define ¢ := (¢1,¢2). One immediately sees that p(w,-) = (p1(w1), pa(+))
is F1 ® Fo-B(Bs)-measurable and that ¢(-,ws) = (v1(+), p2(wy)) is F1 ®
Fo-B(Bj)-measurable. Therefore ¢ is Fy ® Fo-B(B; X By)-measurable (see
Appendix, Lemma A.1).

Analogously, one gets that ¢! is B(B; x Bs)-F; ® F-measurable.

Hence, (€21 x Qq, F1 ®F>) is isomorphic to (B X By, B(By X By)) and, thereby,
a Borel space. O

Theorem 2.26. (Regular conditional distribution)

Let Y be a random variable from (€2, F1,P) to the Borel space (22, F3) and
F C Fi a sub-o-algebra. Then there exists a regular version sy r of the
conditional distribution P({Y € - }|F).

Proof. Let B € B(R) be the Borel set and ¢ : Q29 — B be the measure space
isomorphism corresponding to the Borel space (€25, F3). With Theorem 2.20
we get the regular conditional distribution sy r of the real-valued random
variable Y/ = p o Y. Setting ky r(wi, A) = Ky’ (w1, 9(A)), for all A € F,
closes the proof. O

Now we are able, with the help of lonescu-Tulcea’s theorem, to prove the
Kolmogorov existence theorem in the case that the index set 7' is countable.

Theorem 2.27.

Let T be a countable index set and let (€, F;), t € T, be Borel spaces. Let
(Py)ee(r) be a projective family of probability measures. Then, there exists
a unique probability measure P on (€2, F) with the property

PJ:PO(WJ')_I,

for each finite J C T.
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77777

that the finite product of Borel spaces is a Borel space, i.e. (Q4,...n}, Ffo,...n})

.....

.....

,,,,, )t Pu(A X Q) =P, (A)

The projectivity gives us that P,.4| 7= I?P/’n Since ,7?” C F, is a sub-o-
algebra it follows, by Theorem 2.26, the theorem on the existence of regular
conditional distributions, that a stochastic kernel «],,; from (Qqo . nt1}, Fn)

t0 (Qpi1, Fasr) exists such that
]P)n—i-l(A)
://1A(w0,...,wn,anﬂ)mgﬂ((wo,...,wnﬂ),dwnﬂ)ﬁn(d(wo,...,wn+1)),

for every A € Fio,..nt1}. Since k(- ,A) is measurable w.r.t Fa, Ko 1

-----

does not depend on w, ;. Hence, by
KnJrl((wO? "'7wn)7 ’ ) = ﬁ;1+1((w07"'7wn+1)7 ’ )

..........

P.1(A) ://114(&}0,...7wn+1)f€n+1((w07...,wn),dwn+1)Pn(d(w07...,wn)).

Consequently, P, ; = P, ® k,51 holds and Ionescu-Tulcea’s theorem can be
applied to finish the proof. O

Finally, we can show the Kolmogorov existence theorem for arbitrary
index sets. The proof will resort to the result we have just shown.

Theorem 2.28. (Kolmogorov existence theorem)
Let T be an arbitrary index set and let (£, F;), t € T, be Borel spaces. Let
(Py)ee(r) be a projective family of probability measures. Then, there exists
a unique probability measure IP on (2, F), called projective limit, with the
property

Po <7TJ)_1 = IP)J.
Proof. By the previous theorem we got that for countable J C T there exists
a unique measure P; on (27, F;) with the property Px = Py o (7,)~* for
each K € £(T). A measure on (§2,0(my)) can be defined by

Py((m5) " (Ag)) = Py(Ay),
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where A; € F.

Let J,J" C T be at most countable subsets and let A € o(n;) No(7y)NZ
be a o(m;) No(my)-measurable cylinder with finite Basis. Then, there exists
a finite K C JNJ' and Ax € Fx with A = (7x) ' (Ag).

Hence, fPSJ(A) = PK(AK) = IF)J/(A) for all A € O'(?TJ) N U(?TJ/). From
Lemma 2.13 we know that Z , the set of all cylinder sets with countable
basis, is a o-algebra and furthermore that it holds that

f:®ft: U ZJzé,

teT JCT
J count.
which follows from the fact that 2 C Z C F and 0(Z2) = F. Hence, there
exists a countable J C T with A € o(n;) for every A € F, and we can,
uniquely and independently of the choice of J, define a function P on F by

P(A) =P, (A).

All that remains to show is that P is a probability measure. Obviously,
P(Q2) = 1 holds. Let Ay, As, ... € F pairwise disjoint sets with the property
that A := |J,_, A, then there exist countable J, C T with A, € o(mn,,)
for n € N. Set J = (U, ey Jn- Then, every A, € o(n;) and, thereby, also
Aeo(my), e,

P(A) = By(A) = Py(|J An) = D_Ps(An) = Y P(A)

Therefore, P is a probability measure satisfying the theorem. O]

Definition 2.29.

A topological space (€2, 7) is polish, if it is countably generated and com-
pletely metrizable by a metric, i.e. if there exists a 7 inducing metric d such
that (€2, d) is a complete, separable, metric space.

Definition 2.30.
A measurable space (€, F) is polish, if F is the Borel-o-algebra w.r.t. a
topology 7 that makes (€2, 7) a Polish space.

Theorem 2.31.
Every Polish space (€2, F) is a Borel space.

Proof. Since the proof of this theorem does not lie within the scope of this
work, we refer to [D1], Page 487 ff. O
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Definition 2.32. (Consistency)

Let (I, <) be a partially ordered set and (Q2., F,,P,), v € I, be a family of
probability spaces. For each pair 71,72 € I', 71 < 79, let ¢72 : Q,, — Q,, be
a F,,-F,, -measurable mapping, such that

VL7, €N S e <t 9 0 3 = 073
The family of probability measures (P, ) cr is consistent, if

Ve €T,y < va: Py o (¢22) ' =Py,

71

Definition 2.33.
Let the assumptions from Definition 2.32 hold and define the set Qr as fol-
lows:

Qri={weQ |V <y :wh) =2 (whe)}
For each v € T" let 7, : Qp — €1, be the 7-th coordinate function of Qr, i.e.,
7y (w) := w(7v), and analogously to the product-o-algebra of €, define Br as
the smallest o-algebra on Qr such that m, is Bp-B,-measurable for all v € I'":

Br :=o(r'(B,),y €T).

Y

Then, (2, Br) is the projective limit of the spaces (€2,,5,), v €T

Corollary 2.34. Let (I', <) be a partially ordered set und let (Q2,, B,,P,),
v € I' a family of probability spaces, where €2, is a Polish space and B,
the corresponding o-algebra. Let the probability measures PP, be consistent.
Then, there exists a unique probability measure Pr on (Qr, Br), such that

Vyel: PFOW;IZPW.



Chapter 3

Characterization of Subspaces
of L

Now we turn to an application of the Kolmogorov existence theorem in Ba-
nach space theory. We will prove the astonishing result that every real Ba-
nach space (X, || - ||) is linear isometric to a subspace of L,(Q2, F,P), where
(Q, F,P) is some probability space, as long as || - ||?, 1 < p < 2, is of negative
type. Concretely, the theorem reads like this:

Theorem 3.1.
Let (X, | - ||) be a real Banach space and 1 < p < 2.

(i) If || - |7 is a function of negative type on X, then it holds that for every
B, with 0 < 8 < p, there exists a probability space (€2, F,P), such that
X is linear isometric to a subspace of L,(€2, F,P).

(i) If (X, || - ||) is linear isometric to a subspace of L,(€2, F,P), then | - ||
is a function of negative type on X.

We start our investigation with clearing up the basic properties of func-
tions of negative type and with lemmas that we will need in order to prove
Theorem 3.1.

Definition 3.2. (Function of Negative Type)
Let T # () be a set. The map ¢ : T x T — R is of negative type, if

(i) Yt e T : ¢(t, t) =0,
(i) Vs,t € T : ¢(s,t) = o(t,s),

(ili) Vn e NVty,...,t, € T Vay,...,a, € R, Y a; =0: > ot t5)aa; <O0.

i=1 ij=1

25
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Lemma 3.3.
Let T # () be a set and ¢ : T x T'— R be a non-negative function. Then,
the following two statements are equivalent:

(i) ¢ is of negative type,

(i) For each A > 0 the function e ¢ is positive semidefinite and for all
t € T it holds that ¢(t,t) = 0.

Lemma 3.4.
Let ¢ : T'x T — R be a non-negative function of negative type and u be a
measure on R such that

i 1
/min {17 —}du(m) < 00.
x
0
Then,

) [ 0= (o)

is of negative type. In particular ¢“ is of negative type for all 0 < a < 1.

Lemma 3.5.
Let 0 < p < 2. Then the function ¢ — |¢t[P is of negative type.

For proofs to these three lemmas see [P].

Lemma 3.6.
The norms || - ||, of the spaces L,, 1 < p < 2, are of negative type.

Proof. Let 1 < p < 2. It holds that

n

S s — w5l = S / 2:(w) — 3 (@) Pdpu(w)asa,
ij=1 ig=1¢,

n

- / Z |z (w) — zj(w)[Pa;a;dp(w).

o Bhi=1

Since Lemma 3.5 gives us that ¢ — |t|? is of negative type and, therefore,
that

D lwi(w) = zj(w)Paza; <0,

ij=1
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if > a; =0, we got that

n
> llwi— ajlbaia; <0

1,j=1

and that ||-[|? is of negative type. From Lemma 3.4, together with the choice

: N 1 i : .
of a := 1, it follows that (|| - [2)* = (|| - [[5)> = || - " = [ - [l is of negative
type. O
Theorem 3.7.

Let (€2, F, ) be a probability space, X : (Q,F,u) — (R,B(R)) a random

variable with distribution P, distribution function Fp and a A-integrable

Fourier transform ¢p, where A denotes the Lebesgue measure. Then, it holds
that

() )

e—iat o e—ibt

Va,b e R, a<b: Fp(b) — Fp(a) = / _

2mit

—0o0

op(t)dt.

(ii) X has a bound and continuous A-density fp such that for all x € R

fole) = o / e~ g ().
(iid) .
VieR: ¢p(t) = /emfp(a:)dzn.

Proof. (i): Since e™ : R — C, x — e~ is Lipschitz continuous, there exists
a constant C' such that for all a,b,t € R, t # 0, it holds that

—iat __ ,—ibt

€ €

< C|b—al.

it
For b — a we get from Lévy’s inversion formula (Appendix, Lemma A.36)
that

lim (IP’(a <X <b+

b—a

P(X =a) +P(X = b))

P
=limP(a < X <b) + lim
b—a b—a
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=limP(a < X <b)+P(X =a)

b—a
" —iat bt
Levy ;. . e —et
=" lim 1 t)dt.
fim i | =% ()

Since limy_,, P(a < X < b) > 0 we get for all @ € R that
Y oiat _ o—ibt

P(X =a) <lim li
( a) < lim lim 57t

b—a c—0c0

op(t) ‘ dt

; piat _ bt
< lim nm/‘—. 6w (£)|dt
b—sa c—>00 it
% e—iat _ e—ibt
= lim _— t)|dt

Lipschitz

< limO|b—a|/|¢p(t)|dt:0
b—a

and, therefore, that P(X = a) = 0.

Analogously, one gets P(X = b) = 0 for all b € R from using Lévy inversion
formula for @ — b. Once again, with Lévy’s inversion formula it follows for
every a < b that

y —iat __ ,—ibt on P(X
lim [ )t Y P(a < X < b) +
c—00 2mit

—C

=P(a < X <b) = Fp(b) — Fp(a).

(ii): Using (i) together with the dominated convergence theorem (see Ap-
pendix, Lemma A.6), we get that

, . Fp(b) — Fu(a
Fita) = Jim 0 =)

—iat_e—ibt
= lim li _— t)dt
fm lm J i —a) W

1 e—iat . e_ibt
/ 2mit (bl—{% b—a ) op(t)dt

—00
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[e'S) 1 ) efibt _ efiat
- /_  2mit (ll)l_rg b—a ) de(t)dt

1 ! 1 : —at
=5 —E(—zt)e op(t)dt
1 [ —at

—0o0

Thereby, we have shown the differentiability of Fp with F} = fp and that fp
is a A-density of X.

Using a continuity lemma (see Appendix, Theorem A.7), one sees that the
continuity of fp follows. Namely, for f(t,2) := fp(t)1p(z) = 5= “¢p(t)1r(z)
it holds for every ¢t € R that, t — f(t,z) is in L'(u) for all zx € R and
that © — f(¢t,z) is continuous in ¢, for all ¢ € R. Additionally ¢t —
sup,eg |f(t,2)] = |f(t,z)| is in £ (1) and the assumptions from Theorem A.7

are fulfilled, which then gives the continuity of fp, for each t € R.

The boundedness of fp, for each x € R, follows from

o)l = |z [ e onttat < o [le = onvlar < 5 [ lor(olar < o

since ¢p € L1(R, B, \).
(iii) easily follows from

op(t) = Ee™ = [ e™dP(z) = [ ™ fp(x)dx.
o]

R

Corollary 3.8.
Let 0 < o < 2. Then, there exists an integrable function A, : R — R with

VueR:e U = / " ha(s)ds.
Furthermore, it holds for every g with 0 < 8 < « that

oo

/ ha(s)]s|Pds < co.

—0o0
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Proof. The function v +— e~ " is positive semidefinite. From Lemma 3.5
we get that u — |ul|P is of negative type for 0 < p < 2. The positive
semidefiniteness of this function follows from Lemma 3.3.

With the Lemma of Béchner (Appendix, Lemma A.35) we see that u ~— e~/
is the characteristic function of a Borel probability measure P, on R.

The existence of a density h, with P, = h,ds, coming from Theorem 3.7,
closes the proof. O

Corollary 3.9.
From the Lemma of Bochner (Appendix Lemma A.35) it follows that there
exists a Borel probability measure P, on R such that

o0
el = / e dP,(s)
—o0
is the Fourier transform or characteristic function of IP,.

Lemma 3.10.
Let 0 < 8 < 2. Then, for all u € R it holds that

[e.9] o0

/1 —cos(hu) W/ L—cos(h)

2\B+1 2\B+1
0 0

Proof. For every A € R it holds that 1 — cos(A) < 2 and cos(\) > 1 — ’\;
Hence, it holds that 1 — cos(\) < ’\—22 It follows that
1 oo
1 — cos(Au) 1 — cos( /\u 1 — cos(Au)
/ NG+ d)‘ / NG+ / NG+ dA
0 0 1
1 oo 1 00

22
1 2 0<B<2
2 1-8
< /AﬂHdAJr/)\ﬁHd)\_ /)\ d)\+/)\ﬁ+ld)\ < oo

0 1 0 1

and, therefore, that the integral exists.

To show the equality we first note that the cosine is a symmetric function
and it therefore suffices to show the equality for |u|. Using the substitution
y(A) := |u|\ we get

/ 1- cos()\|u|)d/\ _ / 1- Cos(y)idy _ |u|ﬂ/ 1-— Cos(y)dy
B+ ()P Tl B+
0

o 0 |ul
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The next lemma is the central lemma of this chapter since it proves (i) of
Theorem 3.1. Two proves will be given of this, namely, a proof for the finite
dimensional case that makes no use of the Kolmogorov existence theorem
but is quite insightful, and another proof for the infinite dimensional case
making use of the Kolmogorov existence theorem. Although the proof for
the infinite dimensional case also holds in the finite dimensional case, these
distinctions will allow us to see where the first proof breaks down and the
second holds.

Lemma 3.11.

Let || - || be a norm on a real Banach space X such that for some «, with
0 <a<2 |||*is of negative type. Then, for each 5, 0 < § < a, there exists
a probability space (§2, F,P) such that X is linear isometric to a subspace of
Lg(Q, F,P). (If « =2, X is isometric to a subspace of Lg(2, F,P) for every
B> 0).

Proof. (finite-dimensional case)

Let X be a finite dimensional Banach space such that || - ||* is of negative
type. From Lemma 3.3 we have that exp(—||z||*) is positive semidefinite.
Let x1, ..., 2, be a basis of X. Then the function g,, ., : R" = R with

=1

is positive semidefinite. From the Lemma of Béchner (Appendix, Lemma A.35)
it follows that g, . ., is the Fourier transform, or characteristic function re-
spectively, of a measure P on R", i.e.,

gxl,...,xn(t) = exXp <_

Gornn () = / ¢4 dB(y).

R

Hence, we got

/ei’\“’y)dP(y) = exp (—)\O‘ ) :
R”

Since this is a pure real expression, we get from Euler’s formula that

i=1

n
g t;r;
i=1

/ cos(A(t, 1) dP(y) = exp (—)\“

Rn
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From Corollary 3.8 we know that there exists a function h, : R — R such
that for all w € R

e~ lul” = /ewsha(s)ds Fuler /cos(us)ha(s)ds
and, hence,
/cos(A(t,y»d}P’(y) = /COS ()\s Ztixi )ha(s)ds
R™ —00 i=1

We have [, dP =1and 1 = e %" = [ 05, (s)ds = [7_ ha(s)ds and,

thereby, that
/ | — cos(A{t, y))dP(y) = / | — cos ()\s ) h(s)ds
As next step we divide both sides by A**! and integrate w.r.t. A to get

Rn
1 — cos(A(t,y)) 1 —cos(As||> 0 t332||)
/ / == A gp(y)an = / / = g (s)dsd).

0 —o0

n
E tir;
i—1

Since f: [0,00] x R = R, (A, y) w is continuous up to the Null
set {0} x R and non-negative, Tonelli’s Theorem (Appendix, Theorem A.37)
yields

1 — cos(A 1 —cos(As >0 tx1||)
/ / )\6+1 d)\dIP’ / / VS ha(s)dAds.

—oo 0

Now we can use the identity from Lemma 3.10 to get

)6 — cos( 1 — cos(\(t,y))
/y it y)| / . 1= cosN) o ap(y // Wl IAP(y)
1 —cos(As >0 tiL‘ZH)
// S 1 he(s)dAds

B oo
1 —
/ L= cosN, synds.
0

2\B+1
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Hence, we got

/|ty|ﬁdP /||ﬁh

The finiteness of these expressions follows from Corollary 3.8.

For the map ® : X — Lg(R",P) with (37, t;z;) := 137" | t;¢;, where
ci= (", |5|Pha(s)ds)? and ¢;(w) := w;, it holds that

B
-3 / {1.9) P aB(y)

=—/ z_:tzy@
-/ %itim)

n

- [ e ttw)

i=1

dP(y

B
dP(y)

B

Hence, ® is an isometry.
We show the linearity. Let v,w € X. Then, there exist t;,s; e R, 1 =1,..,n
such that v = > "  t;z; and w =" | s;x;. It follows that

n n

O(v+ w) thz+zsxz = Z(tiJrSi)xi) ZZ(tz‘+Sz‘)¢z‘

i=1 i=1
= Zti¢i + Z Sip; = (I)(Z tiw;) + (I)(Z sivi) = ®(v) + ®(w).
i=1 i=1 i=1 i=1
Furthermore, it holds for A € R that
=AY tim) =B M) = > Mgy = XDty = AD(v)
i=1 i=1 i=1 i=1

Therefore ® is a linear isometry. O
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Proof. (infinite dimensional case)

Let X be a real Banach space such that || - ||“ is of negative type. From
Lemma 3.3 it follows that exp(—||-]|“) is positive semidefinite. Let x1, ..., z, €
X. Then the function g¢,, . ., : R" = R with

n

E tix;

i=1
transform, or characteristic function respectively, of a measure Py,,
R”, i.e.,

.....

.....

-----

/ei)\<t’y>d]P){-T1 ..... :En}(y) = exXp <—)\a

]Rn

Thus, we have a family of probability spaces (2,
where actually Q. . ..; = R" holds.

Consider a semi ordering on the index set I" := {(xy,...,z,)| n € N, x; € X}
defined by Vn,k € N : (z1,....2,) < (y1,..,yx) <= {z1,...,2,} C
{y1s s Ukt

For k > mn, the maps gbgiﬁ]}i D Qo = Qaronds (b, b))
(t1,...,tn), are the projections onto the first n coordinates. If the coordi-
nates appear in a different order we get a corresponding projection.

We show now that the measures Py,, ..} are consistent (Definition 2.32),
ie.,

.....

.....

77777

The theorem on the uniqueness of the Fourier transform (Appendix, Theo-
rem A.34) tells us that it suffices to show the following.
We know that for all ¢t = (¢4, ..., t,) € R™ it holds that
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On the other hand we get from the transformation formula (Appendix, The-
orem A.18) that

]Rn
_ / €N 0 G (AP, (2)
Rk
= [expir Y ol OB a2
RE /=1
—/ei)\zzltizedp{xl ..... xk}(z)
RFE
= /ei)\<t’z>d]P){:v1 ..... xk}(z)
Rk
4.1 i i
(i)exp (—)\a Zti$i >
=1

n
g Lz
i=1

= exp <—/\a

|

where the last equation holds because of t,,1 = ... =t = 0.
1
Therefore, we have that Py, . ..} © ((/ﬁgii:}i) and Py, .. 2, have the

same Fourier transform and, hence, that the consistency of the measures
77777 2} follows from the uniqueness theorem (Appendix, Theorem A.34).
It follows now, with Corollary 2.34, as a direct consequence of the Kol-
mogorov existence theorem, that there exists a measure space (2, F,P), with

"""""""

that
]:P) © (Tr{xl ~~~~~ xn})_l = ]P){Il ..... xn}-

In particular, there exists for each x € X a measure P, on R with

ef||tx||" _ /eitsd]P;x(S) _ /ez’tsdPO (W$)71(8> _ /eith(w)d]p(w)

R™ R Q

Euler / cos(itmy (w))dP(w).

Q
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Now we define the embedding I : X — Lg(Q,P) by I(z) := im,, where
c:= (7, |s|f3ha(s)d3)%. We show that [ is a well-defined linear isometry.

We have e~ I"#1* = [0 cos(itm,(w))dP(w) and e”™" = [*_ cos(Aus)hq(s)ds,
and, thereby, for ||z|| = |u| that

/Cos(itww(w))d]?(w) = /COS(||)\IL‘”S)ha(S)dS
Q —00

holds. From [, dP=1and 1 = [*_h.(s)ds one sees that

/1 — cos(itm,(w))dP(w) = / 1 — cos(\||z||s)ha(s)ds.

Dividing by A?*! and integrating w.r.t \ gives that

o0

1 — cos(itm, (w [ [1—cos (Allx]|s)
// A w)dA = // A he(s)dsdA.
0

—00

Analogously, as in the proof for the finite dimensional case we get by Tonelli’s
theorem (Appendix, Theorem A.37) that

1 — cos(itm,(w - cos(\||z||s)
/ / o ) ixap(e / / e ha(s)dAds

—o0 0

and furthermore by Lemma 3.10 that

— cos(A 11— cos (1tmy(w))
/|7rx NE / e d)\dIP’ // N dAdP(w)
0

T OO1—COS (Allz||s) By 18 1 — cos())
// A1 ha(s)d)\ds:/|5| [l /Tha(s)d)\ds.
e 0

—o00 0
/ o () [P dP(w) = [|2])® / 15/ hals

Hence,
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holds and, in particular, we get that

/ ima(w)PdP(w) | = |z /|s|ﬁha<s>ds ,
Q 0o

which is, following from Corollary 3.8, finite and therefore well-defined.

From this result and the fact that ||m.[l; = [ |7.(w)|dP(w) it follows im-
mediately that I is an isometry, since

B

1 1 g_ L, s i 8 B
ﬁfc—ﬂHMHBfC—BHﬂ?H /\8\ ha(s)ds = |[z]|”.

_7Tx
c

(@) = ]

To show the linearity we consider that

/ exp(iA Y temy, (w))dP(w) = exp(—\°| Ztixiﬂo‘) (3.2)

Rk =1

and

/ NP,y (y) = exp(=A" Y tia|*)
=1

R?’L
holds. Thereby, it follows, together with the consistency of Py, . 4.}, that
exp(=A(| D tiwi]|*) Z/em’”dPO(ﬂ{m ..... ) (Y)
=1 R

— /ei)‘(tvﬂ-{zl ,,,,, zn}(w))dp(w)
Q

= [ A Y bl @) )P,
5 =1

It remains to observe that (7.,
form

e} (W))(¢) = 75, (w) holds, which follows

,,,,,

V7 < e w(n) = 97 (w(he), (3.3)

and the definition of 7 by 7, (w) = w(7y), since we have that
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= ngl 7777 2:n}(ﬂ'{:m ----- arn}(w)) = (ﬂ'{xl ----- $n}(w)>(£)'
First, we show [(tx) = tI(x). For all A € R it holds that

1 = e IMte—t)l* /ei’\(t”’”(w)_”tz(“’))dP(w) = /cos(/\(th(w)—ﬂtx(w)))dIP’(w)
0 0

and, in particular, for A = 1 that

1= / cos(tmy(w) — Tz (w))dP(w).
Q
Hence, for P-almost all w € §2, it has to hold that
tmy(w) — T (w) = 27k (w), k(w) € Z\ {0},

and, thereby, for A = % that

- / cos(Zi(m(m ~ (@) dP(w)

(0

cos(%Zwk(w))dIP’(w) _ / cos(k(w))dP(w),

{O\{O

and, consequently, that k(w) has to be P-almost everywhere equal to 0, since
else it would follow from k(w) € Z that 7 € Q, which would be a contradic-
tion. Hence, we have that tm,(w) = m,(w)

Finally, we show that I(z + y) = I(x) + I(y). Following the proof of
I(tx) = tI(z), we have for all A € R that

(i

1 = e~ INa+y—a-y)

/ ATy ()= )=y ) g o)

Q

[ cosA Ay ) = ma(w) = 7))
Q

holds and particularly for A = 1 that

- / c08(a sy (&) — T (w) — 7 (@) )AP(w).

Q
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Just as before it has to hold, for P-almost all w € €2, that

Tary (@) = () = () = 2mh(w), k(w) € Z\ {0},

and, analogously, for A = % that
1
1= [ cos(5- (Tery (@) — melw) = 7y () dP(w)

cos( —27Tk ))dP(w) = /Cos(k(w))d]P’(w),

Q

b\b

With the same argument as before we see that k(w) = 0 P-almost everywhere
and that m,.,(w) = 7, (w) + m,(w) holds. O

We close this chapter with the short proof of Theorem 3.1 by putting
together what we have so far.

Proof. (For Theorem 3.1)
(i) This is exactly the statement of Lemma 3.11.

(ii) Since X is isometric to a subspace of L,(Q, F,P), 1 < p < 2, it holds
that || - || = || - ||z, and, therefore, by Lemma 3.6 that || - ||” is of negative
type on X. O]



Chapter 4

Majorizing Measures Theorem

The following chapter is dedicated to Michel Talagrand’s and Xavier Fer-
nique’s majorizing measures theorem, a deep and powerful result in the the-
ory of stochastic processes that provides bounds for the expectation of the
supremum of a stochastic process with subgaussian tails.

We start by introducing out setting: we consider a collection of mean-zero
random variables X := (X})er, i.e., EX; =0, for all ¢ € T, where the index
set T is equipped with a distance d such that (7', d) becomes a metric space.
Moreover, X is assumed to have subgaussian tails, i.e.,

2

Vs,t €T Vu>0: P(|X; — X > u) < 2exp <_d2$ 8))'

Consider for a moment the special case that X is a Gaussian process, i.e., a
process where each finite-dimensional distribution is a multivariate normal
distribution. Then, this process is fully characterized by the family of covari-
ances, i.e., (E(X;Xt)), er

By considering the Lo-metric, the natural distance that comes to mind is the
following;:

d(s,t) = (E]X, — X,[)"*

Note that this is only a pseudometric [L], i.e., d(s,t) = 0 does in general
not imply that X, — X; = 0. Thus, we are able to completely characterize
the process X by its distances (d(s,t)), ,p, up to translation by a Gaussian
random variable X, , tg € T', since the process (X; — Xy,),op Will yield the
same distances as X.

If we want to have a clear picture in mind of what is going on, we will turn
to this case.

40
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By B(t,e) we denote the closed ball centered at ¢t € T with radius ¢ > 0
in the metric d and by diam(A) the diameter of the set A C T w.r.t d, i.e.,
diam(A) = sup{d(z,y) : =,y € A}. By C we refer to a positive absolute
constant, which may change from line to line.

Our first goal will be to find upper bounds for E sup,. X;. Note that we use
the definition Esup,.; X; = sup{Esup,.p X; : ' C T, F finite} to avoid
problems with the supremum over possibly uncountably many random vari-
ables. The picture we should have in mind (the figure shown below is taken
from [L]), is the following: for a finite ' C R"”, n € N, and a standard
Gaussian g on R™, we can write X; = (g,¢) and think of the process X as
the projections of F' onto a uniformly random direction. This is possible,
because the orthogonal projection onto a direction g € R™ can be written
as <g,t>ﬁ and, thus, (g,t) determines the position of process on the line
R.gC ]ﬁ” The picture we should have in mind is thus the following:

Figure 4.1: Points in F' C R? projected onto a random direction.

Talagrand’s majorizing measures theorem provides such upper bounds
for Esup,.p X;. Its statement is the following and can be found in [T1], in
particular, Proposition 2.3.:

Theorem 4.1. (Majorizing measures theorem)

Let X = (X})ier be a stochastic process as above and let u be a probability
measure on 7. Let » > 2 and ¢ € N the largest natural number such that
diam(T) < 2r~". Let (A;);>; be an increasing sequence of partitions of T so
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that A; = T and diam(A;) < 2r~7 for each j > i, A € A;. Then, there exists
a constant C' > 0 only depending on r such that

1
Esup X; < C(r)sup r=7, 1o
up o < Cpsup >y log

where A;(t) denotes the unique element of A; containing ¢.

Remark. Note that the quality of this estimate depends on the probability
measure ;¢ on T'. A probability measure p that provides a “decent” bound is
referred to as a majorizing measure.

Remark. In [T1], Talagrand shows the following estimate, which is the most
elaborate form of the majorizing measures theorem: there exists a universal
constant K > 0 such that

1
?V(Ta d) S ]Esup Xt S K/V(Tv d)7

teT

where

v(T,d) := inf{sup / log : p prob. measure on T'}.
teT \

The upper bound can be shown by a combination of Lemma 4.2 and Lemma 4.5
below. The lower bound is derived by the Gaussian isoperimetric inequality
and the famous Sudakov minoration. For details we refer to [T1].

In the second part of this chapter, we will turn to the question of how
to construct those sequences of partitions. For this purpose we will use a
partition scheme going back to Talagrand.

We start our investigation with Talagrands proof of Theorem 4.1, which
uses the so-called “generic chaining”, an argument that already appears in
the work of Kolmogorov.

Proof. (Majorizing measures theorem)

As a first step, we introduce the reformulation E sup,c; Xt = Esup,cp(X: —
Xy, ), which is possible since we are dealing with mean-zero random variables.
The random variable Y := sup,.p(X; — X3,), F C T finite, is now non-
negative, so we can write

EY = /IP’Y>u
0
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Hence, we are interested in bounding P(sup,c,(X: — X3,) > w).
The natural estimate that comes to mind is the union bound,

P(sup(X; — X)) > u) < Y P(X, — Xy, > u). (4.1)

teF teF

If there only a few uncorrelated random variables this bound is quite good,
it is very bad for correlated ones (and especially for a big number of them),
since then, for each random variable a term of roughly the same size will
appear and the bound is vastly overestimating the supremum.

This is where the idea of the generic chaining comes into play by regrouping
the random variables X; which are nearly identical. We illustrate the idea
with T consisting of two finite subsets. At the first level, we consider the
finite subsets 17,75 C T'. The setting is shown in Figure 4.2, which was also
taken from [L]. In each of the two subsets 77 and T, some Gaussians are
clustered together and therefore highly correlated. Thus, projecting them
onto a random direction will project them closely together. We choose now
representatives py(t) € Ty and po(t) € Th for t € T

Figure 4.2: Gaussian random variables clustered together.
Therefore, we can write
Xy — Xiy = Xo = Xpy o) + Xpr o) — Xios (4.2)

Xt - Xto - Xt - ng(t) + ng(t) - Xt(), (4.3)
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where the terms X, ) — Xy, and X, ) — Xy, can be handled with (4.1), i.e

u u
P (sup(Xt X)) > u> <P (Xpl(t) — X, > 5) 4P (X,,Q(t) — X, > —)

teF 2
+ P (X - Xy 2 )+ P (X~ Xpuy 2 5 )
gj;l ;TQ pg( ) 2
There is no reason to stop at one step and we can repeat this procedure
on subsets of 71, T, and the terms X; — X, ), X; — X),). Clearly, this
prescription works for any finite number of subsets and also for a different
splitting than u = u/2 + u/2.
So we can approximate tg by a “chain” of representatives lying in a finite,
ascending sequence of subsets of T, i.e., {t¢c} =To C ...C T, C T, n € N.
Hence, the name “generic chaining”.
A way to choose these representative would be for example the “best approx-
imations” of ¢ in each of the subsets.
The quality of this approximation will be measured through comparison with
numbers r~%, i € Z, r > 2. For the set T' we choose the largest i € Z such
that diam(T) < 2r—".

We work out this prescription more elaborately now. For j > i, we con-
sider finite sets II; C T and points 7;(t) € II; for t € T such that the points
7;(t) are successive approximations of . Obviously, m;(¢) = ¢, has to hold.
Hence, X; — Xy, can be decomposed moving from t; to ¢ along the “chain”
m;j(t), as

— Xio =Y Xuy = Xn, - (4.4)

J>i

To ensure the convergence of (4.4) the mild condition

lim d(t,m;(t)) =0 (4.5)

]—}OO

suffices, while in order to guarantee that 7;(t) approximates ¢, it is enough
to assume '
Ve TVj>i: dmt),mi1(t)) < 2r 9t (4.6)

Additionally, we assume the following two minor restrictions:
Vs,t eTl: Wj(t) = 7Tj(8) — 7Tj,1(t> = 7Tj,1(8) (47)

and
Vo ell;: mi(v) = . (4.8)
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Introducing (4.7) lowers the number of possible increments to control, while
both of them combined give 7; 1 (t) = 7;_1(7;(t)). Hence, controlling X, —
X, _1(t) means controlling X, — X, (), for all v € II;.

Assume now that for certain numbers a;(v), depending on j and v, we have,
for some u > 0,
Vo elly: Xy — X, ) < uaj(v). (4.9)

Setting S = sup,eq s, a5(m;(t)), we get, by (4.5) and (4.9), that
VtGF Xt_Xt() SUS

Using now (4.4), (4.6) and the subgaussian tail estimate, one can show

P(sup(X; — Xpp) > uS) <Y > P(X, — Xp () > ua;(v))

teF j>i vell;
4.10)
u’a3(v) (
<Y Y 2ew ().
Jj>i vell;

We require now that the right-hand side of (4.10) is less than or equal to 1 to
make sense. The most natural choice is to require that this is true for u = 1.

Hence, g
55 vew _E?l) )<t

j>i velly
We set

w;(v) = 2exp (—ﬂ) (4.11)

and want to have that ) " w;(v) < 1. This allows us to incorporate probability
in this investigation.
Consider a probability measure p on 7" and set

Vi>1VYvell;: wj(v)=p({v}).

Then, by (4.11), a;(v) = 2r~7*!, /log 2+ and

Jj+1 0 2
Sl \/lg PEon)

teT J>i

For u > 1, the right-hand side of (4.10) gives 37, >, cp, 2(“’3'2(7’))"2 < 21w

since Q(WJ'T(”))“2 < w;(v)27% ensuring B sup,c (X, — X;,) < CS. Thus,
2
Esup X; < Csup » r 7t [log ——"——. (4.12)
pX= O (0,07
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Consider now the partition (\A;),>; and choose, for each j > i and A € A;,
an arbitrary point x4 € A. For each t € T define

Wj(t) = TA,(t) (4.13)

Then, (4.5),(4.6),(4.7) and (4.8) hold, since (A;),>; is an increasing sequence.
From 3., ZAeAj 277 (A) < 1, we get that there exists a probability
measure ¢/ on T such that u/({za}) > 277 u(A) for all j > i and A € A;.
Applying (4.12) to p/ then gives

, 9j—i+1
Esup <sup y r 7t [log ——. 4.14
up s e Lo e

Using the inequality va + b < \/a + Vb, we see that

/ 9j—i+1 - / 1
lOgu(A—j(t)) < \/j—z+1\/10g2~|— logm,

and by using >~ 777y/j — i +1 < C(r)r~, we conclude that the right-hand
side of (4.14) is at most

_i 1
C(r) (r +Supz logu(A—j(t)))'

teT j>i

By the definition of 7, we see that diam(7") > 2r~7~!. Assume that card(A;, 1) =
1. Then the only A € A;,; fulfills diam(A) < 2r7~! and implies that
diam(7) < 2r=7=!. This is a contradiction and therefore card(A;y;) > 1.
Consequently, there exists an A € A; ;1 with p(A) < 1/2. Then, if t € A, we

have
: . 1
rt < Or) [ [log ——— |,
) ( \/ M(Az'+1(t))>
and subsequently

4 1
Esup X; < C(r)su r7,/log ————.
teYP N )te:IF); \/ gM(Aj(t))

We now turn to the partitioning scheme, which will allow us to construct
a partition as above. We will use this partition scheme in Lemma 4.3. This

O
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scheme will produce an increasing sequence of partitions of 7', for which we
can guarantee that there exists a uniform bound to the maximal diameter
of the elements of each partition, and that the number of elements of the
partitions are bounded in some sense. In particular, it will guarantee the
finiteness of each partition A;.

We are going to work in the following framework: assume that we have
maps ¢; : T — R*, j € Z, for which

S =sup{p;(t) : JEZ, teT} < (4.15)
holds. Furthermore, assume a function 6 : N — R* exists such that

lim 6(n) = co. (4.16)
n—oo
Additionally, we assume for certain numbers r > 4, 5 > 0, that for any point

s €T, any j € Z and any n € N we have: for any point ¢y, ...,t, € B(s,r77)
for which

Vp,g<n : p#Fq = dt,t,) > ri-t (4.17)
holds, we have '
py() = 1 0(n) + min () (118)

In Figure 4.3, a generic instance of this framework is displayed. Given
fixed  and 3, the point a shown in the picture has to be below ¢;(s) for any
s,j,n and tq, ..., t, as specified above.

Remark. The maps ¢; serve the purpose of being a measure of the size
of B(s,3r™7). Since the numbers ¢;,2(t;) depend only on the respective
B(t, 3r=772) balls, we know on the one hand, by d(ts, ty) > r==1 for £ # ¢
and r > 8, that they are well separated from each other and on the other
hand, by ¢, € B(s,r77) that they lie well inside of B(s, 3r™7).

This is a rather weak condition, since we choose “min” instead of “max” and
;42 instead of ;1.

To determine such functions one essentially has to guess them using their
dependence on the geometry of T [T1].

Remark. As we will see later on, this setting is slightly more general than
the one we will need. Namely, we will only use the case 5 = 1. Nevertheless,
this does not change the proofs we will present, so we will not omit it.

As first step we give an example of such a sequence for § = 1.
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— B in o — mi )
a =r"70(n) + minj(te), b= ming;is(te)

S

pi(s) i

Figure 4.3: Hlustration of the framework.

Lemma 4.2.
Let 1 be a probability measure on 7" and let

T 1
S:su/ log ———— de < 0.
er )\ u(B(t.9))

By taking »r =8, § = 1 and defining

0;i(t) = sup{ T/J\/logm de : d(t,u) < 2r—j}

the conditions (4.15)-(4.18) hold with 6(n) = (1/r?)y/logn.

Proof. One easily sees that ¢;(t) < S < oo, for all j € Z and all t €
T, holds, from which condition (4.15) follows. Moreover, for the choice of
0(n) = (1/r*)y/logn also condition (4.16) holds, i.e., lim,, ., #(n) = oco.

To prove that condition (4.18) is fulfilled, let s,ty,...,t, be as in (4.17).

For ¢ < n let s, € B(ty,2r—7=2). By the triangle inequality we get

(4.17) ) A A
d(S, Sg) < d(S, tg) + d(tg, Sg) < r 4 22 < 2r77,

We also see that for ¢ # k we have again by the triangle inequality
d(te, tx) < d(te, s¢) + d(se, si) + d(sp, te) < d(se, s5) + dr772,
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which gives us with the choice of r = 8, that

41 s '
Ases5x) 2 dltesty) — 432 S i1 492 'S g,

This means that the (open) balls B(s,, 2r=772) are disjoint for £ < n and we
can find ¢ such that u(B(sg, 2r—772)) < 1/n, which simply follows from the in-

-----

1
Z / \/logu<3<8e,s>> i
= / \/logu<B<5e,e>> de o logn,

where the last inequality follows from the integrand being at least v/logn for
r=772 < ¢ < 2r7772 Thus, we have

—j—2

r

1 _. 1
w;(s) > ﬁr*h/logn—i-rengirlll / \/logW de,

S¢, 6))
0
from which we get
pi(s) = r770(n) + min g;o(t)

by taking the supremum over all possible s. O

The following two lemmas are the ones incorporating the scheme for con-
structing partitions as required in Theorem 4.1. In fact, the second lemma
is just an alteration of the first, exchanging the condition (4.18).

Lemma 4.3.
Assume (4.15)-(4.18) holds. Let T" have finite diameter, i.e., let i € Z be the
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largest integer such that diam(7) < 2r~*. Then there exists an increasing
sequence of partitions (A;);>; of T', and one can find a natural number ¢;(A)
for each A € A;, such that the following holds:

Each set of A; has diameter at most 2r~7, and, given j > i, any two sets A
and B of Ajq, which are contained in an element of A;, fulfill

liv1(A) # Lj1(B) (4.19)
and
VEeT: Y rP0(0 (A1) < 4S. (4.20)

Remark. The conditions (4.19) and (4.20) combined with the assumptions
(4.17) and (4.18) yield the finiteness of the partitions A;.

Proof. We will show this by inductively constructing the partition: for j = 1,
we set A; = {T'}, £;(T) = 1 and we choose a distinguished point u;(7) such
that

S
Piy2(ui(T)) > sup{piya:t €T} — 3

Assume now that the j-th partition A; has already been constructed and
distinguished points u;(A), for each A € A;, have been chosen for which

Vte A d(t,u(A) <r (4.21)

holds. In particular this means that diam(A) < 2r—7.

We will now go on by constructing the elements of 4, from the elements
of A; by an exhaustion argument which goes as follows: at the first step, see
Figure 4.4, we pick t; € A such that

pj+2(t1) > sup{p;a(t) : t € A} — 279718,

and define the set Dy := AN B(t;,r 1),

We repeat this procedure on A \ D; instead of A until the set A is ex-
hausted, i.e., we construct points ¢, ...,t, € A such that

t, € A\ JB(te,r771),

{<p

©ira2(t,) > sup {gpj+2(t) te A\ U B(tg,r_j_l)} — 27l (4.22)

{<p
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S
sup o, (1)
sup ;.2(t) fea
tea
—27s T e
A
. \ l /
AN B(t;,r=i7Y) = D, possible choices for t;
lia(Dy) =1
Figure 4.4: Illustration of the first selection.
Ae ,A]' D::A\Uitu(thT_j_l)
diam(A) < 2r~J
S
sup (B R
€ i1
J S S WS N sup ©;4o(t) — 2079718
“h /\\ sup ¢542(t)
/D A : ‘ ‘ o
/ - \ 7 AU, Blte,r )
< g et possible choices for ¢,
Ga(D) =1 La(Dy) =p—1

lisi(D2) =2 £;41(D,) =p

Figure 4.5: lustration of the p-th selection.

and define the set D, := B(t,, 7771 N (A \ Ueo, Blte, r‘j_1)>. See Figure
4.5 at this point

The set containing the sets D, is thereby a finite partition (D,),>1 of the
set A, where each element D, has diameter at most 2r~7~!. Partitioning each
of the sets A € A, in this way and collecting them into a single set gives the
new partition A;4.
Choosing now distinguished points and numbers

ujr1(Dp) =1y and  {;41(Dp) = p, (4.23)
we see that (4.19) is indeed fulfilled for the partition A;4.

It remains to prove (4.20).
From (4.21) we see that d(u;(A),t,) < r~7 holds for each p. Moreover, we
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have constructed the partition in such a way that d(ts,tx) > r=7~! for all
¢ < k. Since, by assumption, condition (4.18) holds, we get for each p

0i(u;(A)) > r~70(p) + min Pjra(te)- (4.24)

We also know that A\, B(tr,777") C A\U,, B(tx,7~7~") and therefore

sup {wm(t) te A\ Bt rjl)}

k<t
> sup {gpj+2(t) te A\ U B(tk,r_j_l)}.
k<p

Since t, € A B(t,,r771), we get by applying (4.22) to t,, £ < p, that
P {<p

@jra(te) > sup {goj+2(t) tte A\ B(tx, rﬂ'l)} _gi-i-lg

k<t

> roalty) — 27978,
Combining this with (4.24) we get

pi(uj(A)) = @jralty) +7770(p) — 277718, (4.25)
Let t € D,. Setting A := A;(t) and Aj1(t) := D, we have {;1(A;j11(t)) =
li+1(D,) = p, and we can rewrite (4.25) as

i (i (A5(1) = @jealty) + 17700 (A (1) — 277718, (4.26)

Setting u = u;42(A;42(t)) and observing that u € A; 5(t) C Aj11(t) = D,,

we can conclude that

Pjr2(lp) > sup {s0j+2(t) te A\ U B(tg,r—j—l)} _ 9i—j-1g

I<p
> sup{pjs2(t) 1t € Dy} — 2777718 > pjia(u) — 2777718,
The combination of this with (4.26) yields
i (u;(A;(8))) = @jpa(ujra(Asa(t))) + 1770l (A () — 27775,
Now we can rearrange this inequality and sum up over j > i to get
> 00014 (1)))
Jj2i
<Y (i (A;(1) =D piea(ujra(Ajpa(t) + Y2778
j>i Jj>i Jj=i
< @i(ui(Ai(t)) + i1 (i1 (Aira (1)) +25 <48,
for any ¢t € T, which closes the proof. n
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Lemma 4.4.

Let (T, d) be a metric space. For each j € Z let ¢; : T'— R™ be such that
Y;(t) < S for each j € Z and t € T. Under (4.17) let, instead of (4.18), the
following hold:

max ¥y 0(t) > ,(s) + 790(n). (4.27)
Then the conclusions of Lemma 4.3 hold.

Proof. By defining ¢;(t) := S — 1;(t) one sees that (4.27) yields (4.18), i.e
©i(s) > r7P0(n) + mins<, @;j12(te). Applying now Lemma 4.3 gives the
lemma. O

The next theorem allows to further estimate the right-hand side of Theo-
rem 4.1, given the sequence of partitions (A;),>; satisfies the property (4.19).

Lemma 4.5.

Let (T, d) be a metric space and (\A;),>; be an increasing sequence of parti-
tions of 1" such that each A € A;, j > i, has an associated number ¢;(A) € N
satisfying (4.19). Then there exists a probability measure p on T such that,
given a, 8 > 0,

S —Pi ol <C|[r P +s —Pi ¢ log £;(A
wp >0 s s up ) Y {flog

teT 7>t 7>
(4.28)

with a constant C' > 0 depending only on «,  and r.

Remark. Again, this is a slightly more general result than we need. We will
only use this lemma with § =1 and a = 2. Here we will only show the proof
for the case that a > 1. For the general proof see [T1].

Proof. Let j > i and A € A;. We will construct numbers w;(A) inductively
as follows:

Set w;(T) = 1. Assume that numbers w;_;(A) have been constructed for
AeA;_y. Let now B € A;j such that B C A and define the number

w;(B) = mwﬂ(m. (4.29)

From the property (4.19) of the partition we see that we can use the simple
inequality >, (2 < 2 to give, together with (4.29), the following estimate

ij(B 4J1 Zg 2—231(’4)
BeA;
BCA BCA
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54
From this we get, by induction over j, that

Z Z w;i(A) < ZZFjwz
J>i A€A;

Sy

j>1

5>
Hence, there exists a probability measure p on 7" such that
Vi>iVAeA;: pw(A) > w,;(A),

and in particular

1
log——— <log————. (4.30)
p(A;(t)) w; (A4;(t))
Now let ¢t € T and j > i. Again by (4.29), we see that

w;(A;(t)) = m% (Ao (t) = =47 jngk (Ae(£)) ™7,

k>1i

from which we get, together with (4.30), that

1 -/ Ly o :
log,u(A—j(t)) < log (41 ! gfk(flk(t)) ) =(j—i)log4+2 logli(Ax(t)

k>i

Let now a > 1. Then the basic inequality ¢z +y < {/z 4+ ¢/y implies

¢llog ———— <C\/j—z+\/_zx/log£kAk
M(A k>1
which we can rearrange by changing the order of summation as

BJaO
2l oy <A<>>

j>1

<CY =i+ 2y (Z r—ﬂj> Vlog € (Ax(t)).

j>i k>i \j>k
Since we can find constants such that sz i —i < Cla, B,r) - r P
and V2% Sk 1P < O(a, B,7) - P we can further estimate the above
expression by

Zr b llog (Al( 0y < < C(a,p,r) (r_ﬂi +y g 10g€k(Ak(t))) :

k>i
Taking the supremum over all ¢ € T' completes the proof
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As an application of the majorizing measures theorem we introduce a
theorem which we will use in the next chapter to provide an approximation
result for convex bodies.

It states that for a process X and a sequence as in (4.15)-(4.18), E sup,cp X¢
is bounded by a constant only depending on r.

Remark. Note that so far we have shown everything for metric spaces, but in
fact all the theorems, except the example given in form of Lemma 4.2, also
hold in semimetric spaces.

Theorem 4.6.
Let (T,d) be a semimetric space and let (X;);er be a collection of centered
random variables with subgaussian tail estimate

2
P(|X; — Xs| > a) <exp (—cﬁ) , a>0.

Let r > 1 and let kg be a natural number such that the diam(7T") < r=*o. Let

{er}rs, be a sequence of functions from 7' to R*, uniformly bounded by a

constant depending only on r. Assume the existence of ¢ > 0 such that for

any k the functions @y satisfy for any s € T and for all 1, ....,tx € B,—x(s)

with mutual distances at least 7=*~! one has

max Pria(t;) > or(s) +or "y/log N. (4.31)

-----

Then, we have

Esup X; < C(r)o™".

teT

Proof. Since we know that diam(7) < r~* Lemma 4.4 gives us the existence
of an increasing sequence of partitions (Ag)k>k, of 7' and natural numbers
lp(A), for each A € A;.
This partition is such that each A € A; has diam(A) < 2r~* and that, given
k > ko, for any two sets A, B € A;;; which are contained in the same element
of A;, the numbers satisfy ¢;.1(A) # ¢;41(B). Moreover, the lemma gives us
for each t € T the estimate (note: §=1)

r*k\/l()g i1 (A (t) < A4S0~ (4.32)
2.

k>ko

Furthermore, we obtain from this

rR <R g flog rg 1 (Akgs1 (1) D 77V log b1 (A (1))

k>ko

< 4‘90—1 \/lOg gkoJrl (Ak0+1 (t))




CHAPTER 4. MAJORIZING MEASURES THEOREM 26

Since there exists a p € N such that lg, 1 (Agy+1(t) < pforall t € T', we have

R < 48071\ /log p. (4.33)

Using now Theorem 4.1 and Lemma 4.5 we obtain that

Theorem 4.1 1
Esup X, < C(r)sup =% [log ———
X M) HALD)

Lemma 4.5
< C(r) (T_ko + sup Z r~%/log Ek(Ak(t)))
T k> ko

(4.32),(4.33)
< r)o .



Chapter 5

Contact points of convex bodies

In this chapter we will see an application of the majorizing measures theorem
in convex geometry. Namely, we will improve the bound for the number of
contact points of the famous theorem of John and derive that for each convex
body B in RM there exists another convex body K in RM arbitrarily “close”
to it, which has less than C'M log M contact points with its maximal volume
ellipsoid for an absolute constant C' > 0 (Theorem 5.3).

This goal will be achieved by deriving two crucial results along the way:
The first result, Lemma 5.7, which incorporates the majorizing measures
theorem, will be concerned with estimating the expectation of the supre-
mum of the absolute value of a weighted “Euclidean scalar product” over
the Euclidean unit ball of an n-dimensional Subspace W of RM. More pre-
cisely, each of the squares of the components of a vector in the sum defining
the Euclidean scalar product will be weighted with independent Rademacher
random variables. As we will see, this can be bounded from above by means
of the logarithm of the dimension of the space, i.e., v/log M, and by the
operator norm of the orthogonal projection onto the subspace W consid-
ered with the ¢/ -norm for the domain and the ¢}/-norm for the image, i.e.,
| Py = €3 — @]

The second result, Theorem 5.8, which derives from the aforementioned one,
will show that an n x M-Matrix, n < M, with orthonormal rows and specif-
ically bounded columns, namely, their Euclidean norm should be bounded
by some t > /n/M, possesses submatrices which are “almost” orthogonal.
The size of theses almost orthogonal submatrices depends upon the quality
of approximation, ¢t and n. The dependence on n is of the type nlogn. This
result from [R1] is equivalent to our goal, as we will use this to explicitly
construct the convex body K from Theorem 5.3.

o7
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Let us first introduce some preliminary notions. By a convex body K C RM
we mean a convex and compact set with nonempty interior. With KM we
denote the set of all M-dimensional convex bodies. Let K C L C RM be two
convex bodies, then we call a point x € K N JL a contact point of the two
bodies.

Throughout this chapter we write ey, ..., eas for the canonical basis in RM.
By || [lp, 1 < p < oo we refer to the £)'-norms, where we use || -|| := || - || for
the ¢)'-norm as shorthand notation. Moreover, we denote by B} the closed
unit ball in K;V[ , for all 1 < p < co. We will also use the notation B,(w) for
the closed p-ball, p > 0, centered at w € W in the (semi-)metric d on W,
where W is a n-dimensional subspace of RV,

Furthermore, we will use an extended definition of the Banach-Mazur dis-
tance of convex bodies to determine how “similar” the shapes of two convex
bodies are. Note that the classical Banach-Mazur distance measures how
close two normed spaces are to being isometrically isomorphic, which can
be translated to symmetric convex bodies, since those are the unit balls of
normed spaces. From this translation one can go on to extend the definition
to non-symmetric convex bodies. We have the following definitions:

~

v

A K+u

7

Figure 5.1: Illustration of the Banach-Mazu distance for two convex bodies
K and L and vector u and operator 1" for which the constant c¢ is attained.
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Definition 5.1. (Banach-Mazur distance)
For two convex bodies K, L € K™ we define the Banach-Mazur distance

as
d(K,L) = inf{c > 0|K +u C TL C ¢(K +u)},

where the infimum is taken over all vectors v € RM and all invertible opera-
tors T'.

Definition 5.2. (John ellipsoid) Let K € K™. The John ellipsoid of K is
the maximum volume ellipsoid contained in K.

The goal of this chapter is to show the following theorem, which is due
to M. Rudelson. We will follow his approach from [R1] and [R2]:

Theorem 5.3.
Let B € KM and let € > 0. Then there exists K € K* such that d(K, B) <
1 + ¢ and the number of contact points of K with its John ellipsoid is less
then

m(M,e) = C(e)Mlog M.

Furthermore, if the John ellipsoid of K is B, then the identity operator
idy; in RM has the decomposition

i=1

where m < m(M, ), uy, ..., u,, are the only contact points of K with B3,

=1

and, for every i = 1,...,m, {ja; € [1 —¢,14¢].

This is an astonishing result, since it means that for any convex body B
there can be found another convex body K with geometric distorsion less
than 1 4 ¢ such that the number of the contact points of K with its John
ellipsoid is bounded by a constant depending only on € and growing at most
like M log M with the dimension M.

Remark. This result has already been improved. Namely, Srivastava, Spiel-
man and Batson showed in [S-S-B| that this theorem holds with m(M,e) <
C(e)M for symmetric convex bodies. Moreover, they showed that for any
convex body K there exists a convex body L such that d(K, L) < 2.24 and
the number of contact points is bounded by m(M,e) < C(e)M.
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We will start our investigation by introducing a few lemmas, which will
help us to obtain an intermediate result on almost orthogonal submatrices
of orthogonal matrices on R (see Theorem 5.8). In [R2], Mark Rudelson
states the equivalence of Theorem 5.8 and Theorem 5.3. We will only show
that Theorem 5.8 implies Theorem 5.3.

Definition 5.4. (e-Entropy)

Let (X,d) be a (semi-)metric space and let A, B be subsets of X. By
N(B,d,¢), the so-called e-entropy, we denote the number of closed e-balls
needed to cover B in the (semi-)metric d.

Additionally, we denote by N(A, B) the translates of the set B by elements
of the set A to cover A.

In the following parts of this chapter we will make use of orthogonal
projections. For the definition, see Definition A.39 in the appendix.

Lemma 5.5.

Let W be an n-dimensional subspace of R, let Py be the orthogonal pro-
jection onto W. Let ay,...,ap € R\ {0} and let, for all x € RM | ||-||. be the
norm defined by

M 1/2
e = (Z x2<¢>a?> .

Then, for all ¢ > 0,

(i) ey/log N(BYNW, |-l ,e) < C||Pw : 647 — ¢}|| /Iog M, and

i=1""

1/2
(ii) e/Tog N(BY AW, |[z,€) < C || Py : €M — ¢4 (ZM a2> .

Remark. We write the norm || - ||¢ with an € to denote the fact that its unit
ball, also denoted &, is an ellipsoid, i.e., £ := {z € RM . "M 22(i)a? < 1}
with semi-axis 1/|a;|, @ = 1,..., M. This norm is particularly useful when
considering a John ellipsoid of a convex body.

Proof. Let g be a standard Gaussian random vector in R™. Then Py g is a
standard Gaussian vector in W (Appendix, Lemma A.40).

For a standard Gaussian vector we can apply the dual Sudakov minoration
(see Appendix, Theorem A.41 and subsequent remarks) which gives for (i)
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that
sups\/logN B W, |||y €)= supe\/logN BM nW,e(BMNW))
e>0
<CE sup Z(ng)iti
te(BYNW)° |,
=CE sup |[(Pwg, )|
te(BMnw)°
=CE sup |[(Pwg,t)|.
tEPW(B:{V[)

The last equality follow from the fact that (BM N W)° = Py (BM). (Ap-
pendix, Theorem A.41).

Since for every t € Py (BM) there exists an s € B such that Py (s) =t and
the orthogonal projection Py is self-adjoint and idempotent, i.e., P2, = Py,
we get

CE sup [(Pwg,t)| =CE sup [(Pwg, Ps)]
tePy (B{W) seBM

= CE sup |(PwPwyg,s)|

SEB{M

= CE sup [(Pwy,s)|

sEB{”

Now we use the extreme point estimate

> (Pwg)(i)s;

i=1

sup |(Pwg,s)| = sup

seBM seBM

< sup Z| (Pwg)(@)]]si]

SGB1 i=1

< max [(Pvg)(j)] sup Z Ed

.... SEB{M =1

= max |(Pwg,e;)| sup ||s|lx
.] 7777 SEB{M

to show that

CE sup |(Pyg,s)| < CIE max (Pwg,e;)| = CIE max |(g, Pwe;)| .

M g=,..M " g9=1,...
SEBI 7 1 7 7
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From Lemma A.44, in the appendix, we have, for all £ = 1,..., M, that

M M 1/2
(9. Pive;) = Y _(Pive;)(i)g; 2 (Z(Pwe»(w?) gk = 1Pwe;|l - gr.

=1 =1

which gives us that

7777777777

To estimate this further, note that for independent folded standard nor-

mal distributions |Z;|, we have Emax;—; _a|Zi] < C+v/log M (Appendix,
Lemma A.43). Using this, we obtain

----------

< C||Pw : 64" — 65" \/log M.

Since this chain of inequality holds for the supremum over all € > 0, this
holds for any € > 0 and we have shown part (i) of this lemma.

Analogously, we get for (ii) that

sgge\/logN(Bé” NW, ||-|l¢.e) = sgga\/logN(Bé” NW,e(B¥ nW))

<CE sup [(Pwg,t)|=CE sup [(Pwg, 1)

te(BY W)’ tePw ((B2)")
=CE sup [(Pwg, Pws)|=CE sup [(Pwg,s)|
Se(BéVI)O SE(BQ/I)O

1/2
= CE ||Pwvglls < C (El|Pwgl:)

M 1/2 M 1/2
=C (E > (Pwy, ei>2a?> =C (E > g, PWei>2a?> :
i=1 i=1

As above we use the consequence from Lemma A.44, for all k = 1,..., M,
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that (g, Pwe;) 2 | Pweil - gr to show that

M 1/2
¢ <E Z<97 PW€i>2a12> <EZ | Pweil|a; gk)
i=1
=C <Z HPwez-HQa?Egi>

i=1

2,

1/2
i
(z BvedlPa )
1/2
< C max [|Bve] (Za)

=1

M 1/2
<C||Pw 0 — & <Za§> .
1=1

]

Lemma 5.6.
Let W be an n-dimensional subspace of RM. w € W and p > 0. Consider
the closed p-ball B,(w) in the semimetric

M 1/2
d(v, w) == (Z(v(i) —w(@)*(v(i)* + w(i)Q)) :

Then, we have
conv B,(w) C By,(w).

Proof. First, we check that d is a semimetric.

Let v,w € W. From the definition of d we see that d(v,w) > 0 and that
d(v,w) = 0if and only if v = w. Also the symmetry of d follows immediately
from the symmetries of (v(i) — w(i))? and v(i)? + w(i)?.

On the other hand we see for a,b € R that the inequality

(a —b)?*(a® +b*) = a* + b* + 2a%V* — 2a°b — 2ab* < a* + b*

does not hold true in general. Hence, the triangle inequality does not hold
and d is indeed a semimetric.

Let now v € B,(w). Obviously, we have
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Furthermore, from the inequality a? + b* — 2ab < 2(a? + b?), for all a,b € R,
and the definition of the semimetric d we easily see

M 1/2 M 1/2
(Z(v(i) - w(@'))“) = (Z(v(i) —w(i)? (v*(d) +w?(i) — 2v(i)w(i))>

i:L 1/2
< (2 Z@(z) —w(i))? (V*(i) + w2<i))>
= V2d(v,w) < V2p.

These inequalities also hold for any v € conv B,(w). To see this, let n € N,
a1y ey @y € [0,1] with Y77 ;= 1 and vy, ..., v, € B,(w), such that

n
v = E ;5.
i=1

From the convexity of the function f(x) := z% on R with p € N, i.e.,
FO- ;) < > af(x;) for any finite convex combination of real numbers
x;, we can derive

(Z avi(j) — w(j)) = (Z a;v;(j) — Zoqw(j))
- (Z (i) - w(j)))

< Z ai(vi(j) — w(5))

We consider the case p = 2 to get

M 1/2 M n 4
(Zw)—w(z’»‘*) - (X (Zajvju)—w(z'))

i=1

VAN
VR
o

ﬂ‘ ~
o}
<.
N
-
=
S

=

=
~
N~

=
[\
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and analogously, from the case p =1,
Y 1/2
(Z(v(i) - w(i))gwg(i)> <p.
i=1

Finally, we get from the elementary inequality a® + b* < 4a? + 2(a — b)?, for
all a,b € R, that

=1

M 1/2
d(v,w) = (Z(v(i) —w(@))*(v(i)* + w(i)2)>

IA

M 1/2
(Z(v(i) — w(@))*(4w? (i) + 2(v(i) — w(i))2)>

i=1

M 1/2 M 1/2
<2 (Z(U(i) - w(%’)f%ﬂ?(l’)) + V2 (Z(v(i) - w(i))4>

=1 =1

for every v € conv B,(w). O

Lemma 5.7.

Let W be an n-dimensional subspace of RM. Let ¢y, ..., be independent
random variables having values in {—1,1} with probability 1/2 each. Let
Py : RM — RM be the orthogonal projection onto W. Then

Zwﬂw

E sup < C+/log M - HPW M —)EéVIH

wEWﬂBé\/f

Proof. Denote W, = B N'W. We have to estimate the expectation of the
supremum over all w € Wj of a random process

M
Vo= ew?(i).
=1

Let w,w € W;. Then we see that V,, — V is a symmetric random variable,
since V,, and V are symmetric. Consequently, we get

PV, — Vi >a) =P(Vy — Vi > a) = = - P(|Viy — Via| > a).

N | —
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From the classical subgaussian tail estimate for Rademacher random vari-
ables (see Appendix C, Theorem A.42) we see that the process V,, has a
subgaussian tail estimate

1 2
(Vi = Vi > a) = P(Ve — Vel > 0) Sexp (e =),

with the metric

M 1/2
& (w, ) = (Z (w?(i) — w?(@)f) .

We estimate the metric d by the simpler to control semimetric defined in
Lemma 5.6:

v 1/2
——d(w,w) < d(w, ) = (Z(w(i) —w(i))*(w*(i) + 1172(2'))) ,

V2 i=1

which follows from the simple inequality (w(i) + w(#))* < 2(w?(i) + w3(4)),
foralli=1,..., M.

We already saw in the proof of Lemma 5.6 that the triangle inequality does
not hold for d. However, a generalized triangle inequality for d can be derived
from

Namely, for all u,w,w € W we have
d(w, @) < V2d(w,w) < V2(d(w,u) + d(u, @) < 2(d(w,u) +d(u,@)). (5.3)

Note that balls in the semimetric d are not convex. This problem will later
be overcome by Lemma 5.6.

Let now r € N to be chosen later. Let ky and k; be the largest natural
numbers such that

rF0 > diam(Wy, || - ||oo) =: @ and 7% >

EA
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This is equivalent to —ko > (logr)™*Q and &k < —(log @ — 3 logn)(logr)~!,
from which
ki — ko < (2logr)'logn (5.4)

follows. Additionally, define functions ¢y, : W1 — R by

min{||ul]? | u € conv By, —x(w)} + 1’2;’]“\2, if ko <k <k

ka(w) = \/7"‘1 '
1+ 21;gr +Z];:k1 r—l%’ if k> kl-

We see, for any w € Wi, that the sequence {¢g(w)}32,, is nonnegative and
nondecreasing. Moreover it is bounded by an absolute constant depending
only on r, since for £ < k; we have by (5.4)

1 logn
2logr log M’

pr(w) <1+ (5.5)

and for k > k; we have

\/n log(1 + 2v/2rt)
Q+/log M

N \/log(l + 2+/2rh)
Q

1 o0
<1 -
pr(w) S 1t 5ot >0

<1+ +c(r)r

2logr
< C(r),

where the second to last inequality follows from the fact that this infinite
series is a geometric series.

In order to prove this lemma we have to show that the condition (4.6) holds

for {@p(w)}p2,, with o = (c- Q- /log M)~
So, let x € W; and suppose that the points zi,...,xy € B,-x(x) satisfy
d(zj,z¢) > 6r=F=1 for all j # (.

For k > k; — 1 condition (4.6) follows from the simple volume estimate

N <N (Wi, d,6r ") < N (Wy,d,r %)

r—k=1\ BL2Bj pk—1
SNO%WWWTEJ 2 N<mmwu¢§>

2v2 \ "
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where the last inequality follows for sufficiently large r, which, as we will see
in the case kg < k < k; — 1, will surely be fulfilled because we have to make
the choice r > 16.

To see that this volume estimate implies (4.6), we note first that by the
independence of ¢y o(z;) from x;, for all j =1,..., N, we have

k+2 \/nlog 1+ 2v2rt)
Ay Pra(T;) = 210gr * Z Q+/log M '

=k

In the case that k; +2 > k > k; — 1 we get by (5.5) that

.....

k42
1 logn
> 1 V1 Ry Rl Indog (1 + 2v/2r
> +210grlogM (Q+/log M gzk \/nog +2v/2r)
1
k42
+ (Q+/log M)~ 'r=*\/log N Z rk=t,
—

For the case k > ki + 2 we have

nax  Qk2 (z;)

\/nlog +2v/2rt) k42 \/nlog(1+2\/_r)
B 210g7" +£=Zk:1 Q+/log M +Z2k;-1 Q+/log M

EES \/n log(1 + 2v/2r)

= () + r
2 ovm
k+2

+ (Q+/log M)~ 'r=%/log N Z rkt

l=k+1

. 1 k+2
Choosing now ¢! := > "1 we see that

max_ Vrt2(xj) > @r(x) + (cQ+/log M —*\/log N

and condition (4.6) holds for k& > k; — 1.
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Suppose now that kg < & < k; — 1. For j = 1,..., N, denote by z; the
point of conv B,—r—2(z;) for which the minimum of ||z| is attained, and de-
note by u the similar point of conv Bs,-x(x). By (5.3) and Lemma 5.6 we
have for all 5 # ¢

=)

N
T
A

(zj,0) <2(d(xj, zj) + d(z;, x0))
(d(zj, z;) + 2(d(zj, ze) + d(z¢,x0)))
(d(zj, z) + d(z4, z0) + d(ze, z0))
(162 1 d(z), 20))

VAN VAN VAR VAN
SR QL

so, d(zj, z¢) > %r_k_l if r > 16.
Under the same assumptions on r we also have
d(zj, ) < 2(d(zj, 7;) + d(zj, z))
< 2(8r R )

< 2) r7F < 3p7k,
_(16-256+)r < 3r

.....

_ _ 2
r*.(c-Q-\/log M)™-y/log N < j§7%§N¢k+2(xj)—¢k(x) = 9+log—M' (5.6)

From “* € conv By,«(z) we know, [|25| > |u. Additionally, we have
by definition of u and z; that ||u|| < ||z;|| for all j = 1,..., N. Using these,
together with the parallelogram law ||z; + ul|* +|z; — ul]* = 2(||2; | + ||ul?),

we get

2 2
Zi—w\_ 1o, Lo ||z tu
=N = gl el - (|2
2
Zj +u
< lzl* - JT
< llzll* = Jlull®
< N2 12
< mmax {|z;]" = full
and, therefore,
2 — ul] < 2V0. (5.7)

Thus, 21, ..., zy is contained in u + 2v0B} N W. From d(x;, ;) > 6r "1,
for all j # [, we see that the %r‘k_l—entropy of the set K = u+ 2\/535” Nnw
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in the quasimetric d, namely, the number of %r‘k_l—balls in the quasimetric
d needed to cover K, gives us an upper bound for N.

To estimate this entropy we partition the set K into .S disjoint subsets having
diameter less than Lr=*=19=1/2 in the /., metric. By part (i) of Lemma 5.5

6"
we may assume that

1
Er_;€_10—1/2\/@ <c-Q- Vo - \/log—M. (5.8)

In the first case, S > /N, we can rewrite this as v/2y/Iog S > Iog N and
rearrange (5.8) in the form

ir—k—l(c Q- /log M)™'V/24/log S < 6.

16

So we get (5.6), since

1
16v2

Pulling ﬁr‘l into the constant ¢ we have

2
(c-Q-+/logM)™ ' \/logN <0< 9+log—M’

and, therefore, shown (5.6) for this case.

r* 1 (c-Q-\/log M) 1-y/log N < — = L(e-Q-\/log M)~'y/log S < 6.

16

Suppose now, as second case, that S < v/N. We see that there exists an
element of the partition containing at least v/ N points z;. Let J C {1,....,N}
be the set of the indices of these points. We have
< | 1g-1/2

125 — 2zelloo < 16" (5.9)
for all j,0 € J, j # /.
Using the estimate d(z;, Zg) > % —k=1 from before, and temporarily using the
short hand notations Z; := {i : |z;(?)] > 2|u(i)|} and Z, .= {i : |z(¢)| >
2|u(i)|}, we have
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Then, (5.7) implies

M M
> 22 (i)g, (1) <4 (z(6) — u(i)® <16 6. (5.11)
=1 =1

Combining (5.9) and (5.11) we get that (5.10) is bounded by

(5) <D (250) = 2(0)” - (8u2(@0) + 2 (D)7, (3) + 2())12,(1))

=1

<83 (5 ORI PRI (Zz«?u)n@(i)+Zz§<z'>nm<z>)

M 071/2 2
Z 2;(1) — ze(i 2u2(z)+( 16 rk1> -2-166

Thus, by rearranging this inequality, we have for all j, ¢ € J, j #£ {

M 1/2
(Z(zj(i)_ze(i))z-ug(i)> >é k1

i=1

| /\

Then, part (ii) of Lemma 5.5 implies

M 1/2
“WloglJ|<e-Vo-Q- (Z“%)) <cVh-Q.

i=1

Since, for all 8 > 0,

2V0 < \Jlog M - 0 + ——
Vvl1o gM
holds, and we know from |J| > v/N that y/log|.J| > v/Iog N/v/2 > /log N/2,

we get

1
=1 /log N < g?" log|J| <c Q- +/logM (9+lsg—M>

Pulling again -=r~! into the constant ¢ and rearranging this inequality, we

. 16
obtain

1
Fle Q- \/logM)*l\/logNSH—Q—E §9+logM'
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Therefore, we have also shown (5.6) for the second case.
Altogether, we have proven that condition (4.6) holds for {yx(w)}72, with
o= (c-Q-+/log M)~ and that we can finally apply Theorem 4.6 to get

Z gw? (i)

E sup SC’\/logMHPW:ﬁW%@WH.

wEWﬂBéM

[]

The next theorem was proposed by B. Kashin and L. Tsafriri [Kas-Tz].
As already mentioned, this theorem will imply Theorem 5.3.

Theorem 5.8.
Let A = (a;;) be an n x M matrix with orthonormal rows and let t > 1. Let

the inequality
N 1/2
\/% (Z a? > <t
i =
n -
=1
hold for all j =1, ..., M.

Then, for every € > 0, there exists a set I C {1, ..., M} such that

nt?

t2

and for all z € R™
M T
(=)ol < 47| RiAT] < (40 ol (519)
where R; : RM — RM denotes the orthogonal projection onto the space span

{e; i eI}

Proof. Let M > C;—znlogn for some absolute constant C. Let A = (a; ;) be
an n x M matrix for which

n 1/2
\/% (Z a2 > <t
%,] —=
n =1

holds for all j = 1,..., M. Define a sequence {&;}}, of Rademacher random
variables and set [y = {i : ¢; = 1}. From 0 < |[;| < M we can deduce that

MY 1 M 1 M 1
P(L<=)2-andP(— (1-— ) <|L|) 2P (= <L) > -,
2 2 2 VM 2 2
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which gives us with probability at least 1/4 that

M 1 M
3 (1- o) i< (5.14)

Let w(1),...,w(M) be the coordinates of a vector w € W := ATR™. Note
that from the fact that W N B is the euclidean unit ball in W, we know
that sup ||w|| = sup ||z||, from which follows that

zeBY

weWnNBM
sup [2|Rp Az — [l2]*| = sup |2 Rpw]* — [lw]?|
zeBy weWNBM
M M
= sup |2 Z w? (i) — Z w?(i)| = sup gaw?(i)] .
wGWﬁBéV[ iel; i=1 wEWﬁBéV[ i=1

Note that w; := ATe;, i = 1,...,n, is a basis of W, since the columns of A” are

orthonormal. From this, together with the inequality 4/ % (2?21 ai j) 12 <t,

we get

[P+ 6 = A7) = sup | Bwal) = sup | 3o, wiuwi].

(EEB{\J JBEB{VI i=1

Since the supremum is attained in an extreme point of BM, there exists a
j €{1,...,n} such that

n n
sup || ) {w wihw|| = 1) ajawi]
i=1

CIEEB{M i=1 —
= A (aig)imall < A2 - ll(aig)iss lleg

N 1/2
= ll(ai;)izilley = (Z a%)
i=1

<t\/—
— M.

In the last, line we used || AT[|2 = \/Amax(AAT) = /Amax (L) = 1.

1
< Z
)<

By Markov’s inequality we have

M M
ain(z’)
=1

81’(1)2 (l)
=1

> 4E sup

wEWﬁBéw

P sup
wEWﬂBéM
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and consequently, with probability at least 3/4, that

M

> (i)

i=1

M

D (i)

=1

<4E sup
wEWﬂBé”

sup
wEVVﬁBéW

From this, together with Lemma 5.7, we have with probability greater than
3/4.

Zéz <(Ct- [ \/log M
(5.15)

Hence, there exists a set [; C {1, ..., M} satisfying (5.14) and (5.15).

sup 2Ry, AT ? — [|o]| = sup
zeBY wEWﬂB

Repeating these steps inductively, we obtain a decreasing sequence of sets
{1,..,M} =: Iy D I D ... D I, such that with probability greater 1/4,
analogously as in (5.14),

| I | 1 | 1|
PR ) < ] < 24 (5.16)
2 V| k| 2

Analogously, as in (5.15), we get by Markov’s inequality,
) <

sup E g;w E g;w
’wEWkﬂB

that with probability at least 3/4

Zew

Furthermore, we have at each step of induction

>4  sup
wEkaBm

1
47

<4E sup
weW,NB"

sup
weW,NB*

Zew

3
5 llzllg < 2" || Ry, A2 <5 lzlg. (5.17)
W.lo.g. we can assume that I_; = {1,....m} for some m < M. Let
W, = leflAT]R” C R™and let Py, : R™ — R™ be the orthogonal projection
onto Wy. Then, by (5.17),

. 3
2" R, ATB} C 5B W
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holds and we have for a random set I, C I},_1,

E sup (2kHR1kATx||2 — 2k_1||R1k71ATxH2)

reBy

<E sup QZw?— Z w?

3
weWrN5 B3 | icry, icl,_,

m
2
=[E sup E E;W;
wGWkﬂﬁBm i=1
Zez

We also need to estimate || Py, : £7* — ¢3||, which is possible by (5.17) and
gives

< sup

wGW@mBm

ﬁdto

P ) <2 |25 R A7) o | <2

Again, by Lemma 5.7 we get with probability greater than 3/4

sup (2R A"l = 27| By ATal?) < Oty [y iow TRl

z€BY

Note that we have absorbed a factor v/2 from || Py, : 7" — (3] < 255 /i
into the constant C'.

From these inequalities and (5.15), we obtain by the triangle inequality, to-
gether with |I| < M/2F, that

sup |2°| Ry, AT|* — |||
z€BY

< sup |2 Ry, AT - wr&}wwmwwﬁfWMﬁwu

z€B 5

/n
< =/ § [
_Ct( i logM+k M/Qk -/ log |1}— 1)
<sCte - gL <Ot [ S0 2L (5.18)
= M2 ol = M2 2
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We break this procedure if the last expression of the above chain of inequal-
ities is smaller than €/2 and get in this case that

t? 2 M t? 12
c-—-n- logn—<2—_C —-n- logn (5.19)
g2 g2 $

Indeed, under the assumption that log 2M5 > 1 we have

nQ M2 S$42 M
— <log — < log — < —
log = = log o S log 5 + log o = C'log 5

which gives us, together with

nt? M
[~ y]log— < = 1 _1 -
M/25 5 — ('log og 2

the lower bound of (5.19).

Assume now that there exists no such upper bound as in (5.19). Note that
we still can find a bound with a constant C'(n, M) depending on n and M.
Assume that log ’;—t; > 1, giving us

nt? t2 nt? nt?
log c—log >logc—|—log— >c10g—.

Then we have

9
5 = M/QS o8 5, 2

ntQ
> C't- > - clog
C(n,M)-5 -n-log ™

> C(n,M)e.

This tells us that % > C(n, M), contradicting our assumption that we can’t
find an upper bound of (5.19) independent of n and M.

With (5.14) and (5.16) we can deduce that

M = 1 M
— 1— < | < —.
> H( m) 2
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This term can be estimated from below by the Weierstrass product inequality,
e, [[m,(1 —w;) >1—=3"" u; for u; € [0,1], i = 1,...,n, yielding

- 1 ) L I .
- —— | >1-
(

1 1 (1+V2)(vV25 - 1)
o V2k | L] V2

and, subsequently,

M 4 M
(R P o

which tells us, together with (5.19), that the set |I,| fulfills (5.12).
From the lower bound, together with (5.19) and the fact that nt?/e? > ¢ n,
one sees that

t? nt? 4 t?
|Is|20~6—2-n-10g6—2~ 1_T| Zc-?-n-logn.
S

Hence, we can reformulate (5.20) as

M ( £ )‘1/2 M
1—(c-—=-n-logn <2°< )
| 1| ( g2 1]

Thus, from (5.18) we have

2 <e

Atz |

sup
zeBY

]

We go on now by using this theorem to show that for each convex body,
with the euclidean unit ball as its John ellipsoid, there exists a decomposition
of the identity operator in terms of the contact points of these two bodies.
This is in general not a John’s decomposition, but the number of contact
points needed is bounded by C(e)M log M, where M denotes the dimension
of the space.

Having shown this Lemma, we will use it to prove Theorem 5.11, which is
an approximate version of the John’s decomposition. By this approximate
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John’s decomposition it is possible to show Theorem 5.3. Namely, one can
construct the convex body K required in Theorem 5.3.

Let’s turn to the aforementioned lemma. We will make use of the notation of
rank-1 orthogonal projections (appendix, Definition A.39 and the following
remark). Its statement is the following:

Lemma 5.9.
Let K € KM with John ellipsoid B} and let € > 0. Then, there exist

m < C(e)M log M

contact points xq, ..., z,, and positive numbers ¢y, ..., ¢,, so that the identity
operator in R has the decomposition

N <
id Z—E iLi i+9,
1A s mi:16$®x+

where ||S: 01 — 03| < e and N € N with N < M (M + 3)/2.

Proof. Let ¢ > 0. Let K € KM with John ellipsoid B}!. Then, by John’s
theorem, there exist N < M (M + 3)/2 contact points z1, ..., zx and positive
numbers ci, ..., cx such that the identity operator in R can be decomposed
as

N
i=1

and
N

> =0 (5.22)
i=1

holds.

Define the M x N-matrix A := (a;;) = (/¢5;(i)). Due to (5.21), we have
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Hence, S, /ciwi(j)y/Gri(k) = 0;% and, thereby, that the rows of A are

1/2
orthonormal. With ¢ := /4% max /¢ we have /2% <Zf\i1 a?’j> <t.
]: 7777
Thus, by Theorem 5.7,
N
sup | [ReATz|? = Jlz]?| <
mGBé‘/I | |

for a set I C {1,..., N} with |I| < C(g)M log M. Since

N
sup ‘mHRIATxHQ el

xeBé”

N

iel

Y

we get by setting m = |I| and renaming (z;);=;,..n so that (z;);e; are the
first m elements, that

N m
1=

Taking the trace of this expression yields the statement of the theorem. [

Before we go on, we introduce another lemma which will be needed to

show Theorem 5.11. We will only give the idea of proof and relegate the
reader to Lemma 3.2 of [R2] for further details.
It allows us to estimate the expectation of the norm of a randomized sum of
rank-1 orthogonal projections in terms of the norm of the sum off all rank-1
orthogonal projections which are partaking in the randomized sum. More
precisely, we have

Lemma 5.10.
Let v, ...,yn € RM and €4, ..., €, be independent Bernoulli random variables.
Then, for some constant C,

Z EilYi @ Yi
i=1

Proof. (Idea)
By an estimate of Dudley [L-T}, one can show

Z Eili @ Yi
i=1

1/2

E

Z Yi @ Yi
i=1

,,,,,

E

< 0/ (log N (B, 6,u)) " du,
0
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1/2

with the metric §(z,y) = (Z?:l ({z,y;)? — (y,yi>2)2>
One can estimate further with elementary arguments and show

1
N@%&MSN(@Mwmjﬁ,

where || - |ly ;== sup [ y)| and p=2]]D ",y ® yi|['/?, and, furthermore,

i=1,...,n

Z Eili @ Yi
i=1

For v > 1 one has NV (Bé”, - ly, v) = 1. By a standard volume estimate

E

<Cp [ (tog N (B |-y v)) " o
0

M M 1 2\ M
N(BQ7H.HY7/U)§N BQ?HH’EU/ S 1_'_5 )

Additionally, by an inequality of Pajor and Tomczak-Jaegermann [P-T], one
has

(log N (B3 |- llv,»))"* < “Ellglly < Cn/ ™" \/log,

where g denotes a standard gaussian vector in RM.
Combining these, one gets

| g N (Bl 0)) o
0

M= 2\ /2 ! dv
§/ (Mlog (1+—)) dv+/ C+/logn—
0 v M-1/2 v
<log(l+2Vv M)+ Cy/lognlog VM.
]

We now show the already mentioned theorem about the approximate

John’s decomposition. Note that the derivation of this theorem is necessary,
since the vectors x; and positive numbers ¢; of the approximate decomposition
of the identity operator idy; in RM in Lemma 5.9 do not necessarily sum up
to zero, i.e., Y " ¢z # 0.
However, in this theorem we construct a vector u € R such that we get
yet another approximate decomposition of the identity operator in RM and,
additionally, that the vectors constituting this decomposition add up to zero.
This is a crucial condition for the construction of the body K in the proof of
Theorem 5.3.
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Theorem 5.11. (Approximate John’s decomposition)
Let K € KM with John ellipsoid B} and let € > 0. Then there exist

m < C(e)M log M

contact points 1, ..., 7,, and a vector u, |lu| < C()(Mlog M)~'/2 so that
the identity operator idy; in RM has the decomposition

M m
idyy m;(a:+u)®(x+u)+ (5.23)
where .
D (wi+u)=0 (5.24)
i=1
and

1S : 65 — 0 < e. (5.25)

Proof. Lete > 0. Let K € K with John ellipsoid B}. Then, by Lemma 5.9,
there exist a decomposition of the identity operator idy; in R in terms of

the contact points 7y, ...,7, of K and B and positive numbers ci, ..., c,,
where n < C'(e)M log M, such that

: N~ _
ldM:%;CF’L‘Z@JZZ—I—S,

where [|S]| < £ and N € N with N < w
By defining ¢; := %ci, we can write

idy = Zéiji ®T; + 5.

=1

Set now L = |#] and, for i = 1,...,n, N; = |%F] or N; = [ %] + 1, such

that we have ) | N; = L. Furthermore, define the sequence z, ...,z by
N; times repeating z;. Define

L
_ M
Ty ::f;xiééxi-l—&
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Then we have

. . —~(_  NM\_
| idp —To| = Z(Ci— 7 )xi®xi—|—5

i=1

“ L M
< Ci—~ —Ni | =5, ®x;+ S
= ;(CM )Lx X x; +
M & L
<T 2 Gy~ Ni| [|Z: @ z4]| + ||S|

M,
STZ||9U1‘®%||+||S||
i=1

<Mn+5<5
- L 8§ 4
and
L n
M _ NM\ _
72w = (a0
i=1 i=1
ML
< — ci— — Ni| || T
< [eag M I
M & Mn e
<= < = <
S OICIES LEg
Set now ug == —1 >, Z; and Ty ::%Zle(a:i—f—uo)@(xi—i—uo). We get

L
- M
=1

L
M
<2 (I;xz>®uo + M||ug ® uol| + |||
£ € n? ¢ g2 e? € _¢€
<20+ Mo+ = < 8§51
=% sm TN s S e T3S

where the last expression follows for sufficiently small €.
Let {&;}X, be a sequence of independent Bernoulli random variables and
I, = {i : ¢ = 1} be the set of indices of random variables with value 1.
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Clearly, with probability greater than 3/4, we have L/4 < |I;| < 3L/4.
Define the operator

- M
T1 = QT Z(l’z + Uo) X (.Tl + uo).

i€l

Set Iy := {1, ..., L} and momentarily y; := x; + ug. We have, by Markov’s
inequality, that

_ _ 1
P (|11 — To|| > E|| Ty — Tyl)) < 3
and therefore, by Lemma 5.10, with probability at least 1/2

| Ty — Tol| < E|Ty — To|

:%E Z%‘@yi— Z Yi @ Y;

i€l iEfo\Il
<% E Zyz’@)yz‘ +E Z!ﬁ@yi
~ L ; .
i€l i€lo\
v L L
=7 <E ;&yi@yi +E ;(1—51')%@% >
I 1/2
Lemm<a 5.10 9 1 Mm H H Z ®
I og og zirll,aXL Yi o Yi 9 Y;
Since max ly:|| < C, for some constant C, and
- L L _ o , L
>yl = i 7ol < i (1T = Toll + (| To — idn|| + llidnll) < 255
i=1

we can further estimate this to get

— M
Ty — Tol| <4C4/ flog M+/log L (5.26)

Set

Since Y71, (i +uo) = 0, we have Y, (i +10) = — Y p\p, (% + o). This
implies, by Jensen’s inequality, linearity of the expectation, independence of
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L 1 2

=1

L L
S\;f\/;

Therefore, we can choose I; such that L/4 < |I;| < 3L/4, (5.26) holds and

the ¢;, and E(g; — 1/2) = 0, that

L
E Z Ei(l'i + Uo)
i=1

=K

XL: (si _ %) (s + o)

i=1

L
1 v M V2
lrll = {2 et + wo) | < —=m < ——
|11 ; V2|1 I
Set Y
T = 272@Z + ug +u1) 0%y (xZ + ug +U1)-
el
We have
M M MIT
fz<xi+u0)‘: T Tt |Ll|“0
i€l ich
M M| 1|
SfZH%HﬂL 7 [|uol|
i€l
M‘[l‘ 9
ML), e )
=77 (+8M ’

and, thereby,

Z ((%1 + U()) & (751 + Ul & (LCZ + UO))

i€ly

_ M
|Ty =T < 2f (

+ [Li]flur @ Ul”)

M|I 2 M|L| 2
<2 ‘1|(1+5)-f+2 Al 2
L sM) /L] L |
A2(LM  AM
< +

- L L
£

< (1 21)-—.
<+ |1| 2n
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Repeating these steps inductively, we get a sequence of sets I, C ... C I} C
In={1,..., L} and a sequence of vectors ug, uy, ..., us for which

1 3
1] < |1 < -1,
4| k|—| k+1‘—4| k|7

V2

Jull < —=
VI
and
Z(xl +ug+ ... tup) =0

i€},

holds. Furthermore, we have for the operator

M
T, = 2kf Z(:Bi + U+ e+ up) @ (2 + uo + oo+ uk)

i€l
that
| M
| Thsr — Tkl < C i log M +/log |I]|. (5.27)
k

Now we sum up the inequalities (5.27) and get

lida =T3l < lidar =Toll + Y 1Tk = Trall < - + CM log

k=0 4 k=0 V |Ik|

Choosing s such that the last expression of these inequalities is smaller than
/2 one would be able to conclude that |I,| < C(¢)M log® M. But, since
n < C(e)Mlog M and |I5| < n, we actually even have |I5| < C(e)M log M.
It follows that

Cle)

Mlog M~
By setting m = |I|, u = uy + ... + us and renaming {1, ..., L} such that I
becomes the initial sequence {1,...,m}, we obtain (5.24) and

lug +ur + .+ us | <

2°M
L

: - £
idy — ;(xl—l—u)@(azﬁ—u) < 3

25M
L

m| < 5M holds and we can further estimate this to get

<e.

M &
Ay — — i i
id mEZ (7 +u) ® (2; + )

Taking the trace of this returns (5.23) and (5.25). O
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With the help of this Theorem we can finally show Theorem 5.3.

Proof. (Theorem 5.3)

Let B be embedded in RM so that B is its John ellipsoid and let € > 0. We
use Theorem 5.11, namely that B has an approximate John’s decomposition,
to construct the convex body K. Define B := B + u, y; := x; + v and

M &
T=id —S:—§ @ Y,
1d pz mi:1y®y

where ||S]| < /8.
We see that (5.24) can be written as

zm:yz‘ = 0. (5.28)
i=1

Let v € RM be a vector with [jv]| < e/v/M, which will be defined later.
Furthermore, set
M m
T,=—=> (yi+v)® (yi +v),

m <
=1

R,=T,%and £ := €&, := R,BM.
By (5.28), we have
1T, —idar || < T = Tl + [15]]
M m
> wevtvey)
m

=1

< + Mljlv @ | + ||S]]

3 £
= M|v®v| + 9] g52+§ <3 (5.29)

for sufficiently small e. Thus, (1 —$5)€ C By C (1+£)€.

Denote
1

o & Y

Zi -

and set

~ 1 _
K := conv (1 +€(B +v), 21, ,zm) .

Since B € BY and ||[v|| < ¢/v/M, we get that the only contact points of K
with £ are zq, ..., z,,. We go on to show

1J1r€(B+v)CI~(C(1+25)(B+v).
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The first inclusion follows by the definition of K. To show the other inclusion,
let x € K and consider the decomposition

o m
= b 170
T 11 —l—i;az

where b € B+ v, oy; > 1 and Z?loo%' < 1.

From z; € OB and y; + v € (B + v) we get ||y + v||geo = 1. Since
|v|| < e/vVM and ||Ju|| < C(e)(M log M)~/ we have, for sufficiently large
M, that ||u|| + ||v]| < €/2 and can conclude, that

1
Iy + vlle > ( ) s + o]
1+

> (3 ) Gl =l = ol

Using now the triangle inequality, we can show that

o o llyi + V|l 5o oo R
< o+ a < Y <14 2.
”xH_l-i-e’:‘H H+i:1& Ny +vlle _1+5+1—5i21a s

Thus, we can define the following decomposition of the identity operator in
]RM

M
ldM = R;l oT o R;l = Z EHyl + vH%(R;lzz) & (R;lzz)

i=1

Setting a; := X ||y; + v[|} and u; := R;'%;, for i = 1,...,m, this reads as

idy =) agu; ® u;. (5.30)

=1

By defining K := R;lf(, we get a body K C B that has uy, ..., u,, as the
only contact points with B!. Tt remains to choose the vector v, so that

i=1



CHAPTER 5. CONTACT POINTS OF CONVEX BODIES 88

since then, (5.30) and (5.31) become a John’s decomposition of K and B}
is its John ellipsoid.
To do so, we rewrite (5.31) in the following way

m
0= E a; U;
=1

M i _ 2 Yi +v
E— ] 1 R 1 P+
m (;H . (Y 'U)H HRJI(%’—FU)H)

= %RJI (Z@z +0, T, (g + ) (i + U>> |

m 5
=1

Define, with the above reformulation, the function F : \/‘EMBéVI — RM by

F(v) = — (Z@z + U,Tv_l(yi + v)>1/2> (Z (<.% + U,T,U_l(yz‘ + U)>1/2 — 1) yi) )

i=1 i=1

Recall that the Brouwer fixed point theorem states, that a continuous map-
ping G from the Euclidean unit ball into itself has a fixed point, i.e., a point
w for which G(w) = w. Obviously, the same holds true for a stretched or
shrinked version of the unit ball.

Hence, if we can show that for all w, with ||w| < e/v/M, it holds that
|F(w)|| < e/v/M, then there exists a vector v, with ||v|]] < e/v/M, that
fulfills (5.31).

Let u € B! be a vector and a, ..., ,,, then by Cauchy-Schwarz

‘<Z%’yi,u> Zaz‘ (Yi, w)
i=1 i=1

m 1/2
< . )2
< Vm max o (Z(yl,w >

i=1

max |a;||| T

m
v M i=1,...m

max la;|(1+¢), (5.32)
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since ||| = |lidy — S| < |Jidm|| +[|S|| < 14+¢/8 <1 +e.
Furthermore, we have that

’<yz+w T (i + ) - 1’

< [(yi + w, g + w)" —1‘+‘ Yi +w, yi +w 1/2—<y1+w,T51(yi+w)>l/2"

With (5.29), i.e., || T —idu|| < /4, and ||ly; +w|| < 2 we can estimate further

and conclude, for sufficiently large M, that this is smaller than

2¢e

2¢e
g+ w1+ )2 — 1]+ 2y - T\|<\/—M+24_3. (5.33)

We just showed in the estimate (5.33)
[ w0, T ()} — 1| < 2y — T < /2
which, by the triangle and inverse triangle inequality, implies
l—e<(yi+w T (g +w) /2 <1+e

On the one hand, we get from this that

m

> i+ w, T i+ w)'? > m(1—e), (5.34)

=1

and on the other hand, since %a; = (y; + w, T, (y; + w))'/?, that

o el 1+¢]
MaZ £, el.

Thus, by (5.34), (5.32) and (5.33), we have for w € Z=By"

| F(w E i+ w, T, (yﬂrwl/2 E yi +w, Ty +w)2 = 1) y;
1 1+¢e 2 € B
g—— %<——.
VM VM

Hence, there exist a vector v with |Jv|| < satisfying (5.31). O

\ﬁ




Appendix A

In this appendix we provide results which are used throughout this work.
References to proofs of these theorems and lemmas are given.

Probability theory

Lemma A.1.

Let T # () be an index set and (Q,F), (2, F") and (€, F;) be measure
spaces, t € T. Furthermore, let (X;)ier be a family of measurable maps
Xy : Q' — Q; such that 7/ = 0(X, : t € T') holds. Then, the map Y : Q — ¢/
is F-F'-measurable, if and only if X; oY is F-F;-measurable for every t € T.

Proof. see [K]|, Page 35. O

Definition A.2. (Dynkin system)
Let Q be a set. Then, a set D C P(1) is called a Dynkin system, if

(i) Q€D
(ii) AeD = A€ D
(iii) {An}nen C D disjoint = oy An € D.

Theorem A.3. (Dynkin’s theorem)
Let £ C P(Q) be closed under finite intersection. Then, it holds that

0(€) = (&),

where 0(€) denotes the generated Dynkin system.

90
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Proof. see [K], Page 7. O

Lemma A.4. (Uniqueness by generators with finite intersection property)
Let (€2, F, 1) be a o-finite measure space and let £ C F be a generator of F
which is closed under finite intersection and such, that there exists a sequence
(En)neny with B, € €, u(E,) < oo, for all n € N and E,, 1 Q.

Then, p is uniquely determined by the values u(F) for E € £.

If 14 is a probability measure, the lemma holds without the existence of the
sequence (Ey,)nen.

Proof. see [K]|, Page 19. ]

Theorem A.5. (Monotone convergence theorem)
Let (fn)nen be a monotonously growing sequence of positive, measurable
functions. Then, following holds

[ st =sup [
neN neN
Q Q
Proof. see [K]|, Page 85. O

Lemma A.6. (Dominated convergence theorem)

Let f be measurable and (f,)nen & sequence in £'(u) with f, "=° f con-
verging in probability. Let 0 < g € £'(u) be such that |f,| < g almost
everywhere for all n € N. Then, it holds that f € £'(x) and f,, "= f in L,

ie.,
/ fudp "= / fdp.

Proof. See [K], Page 135. O

Theorem A.7.
Let (E,d) be a metric space, o € E and f : Q x F — R a map with the
properties that

(i) for every x € E the map w — f(w, ) is in L (p),

(i) for almost all w € Q the map = — f(w,z) is continuous in x,
(iii) the map h: w > sup,cp |f(w, )] is in L' ().
Then, the map F': E - R, . — [ f(w,z)p(dw) is continuous in .

Proof. see [K], Page 136. O
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Theorem A.8. (Factorization theorem)

Let (€', ') be a measure space and let €2 be a non-empty set. Let f: Q —
be a map. A map g : Q — R is o(f)-B(R)-measurable, if and only if there
exists a measurable map ¢ : (', F') — (R, B(R)) with g = p o f.

Proof. see [K], Page 40. O

Definition A.9. (Conditional expectation, conditional probability)
A random variable Y is called conditional expectation of a random vari-
able X given the o-algebra F, denoted by Y = E(X|F), if

(i) Y is F-measurable
For each B € F, the conditional probability of B given F is defined as
P(B|F) := E(15|F).

Theorem A.10. (Properties of the conditional expectation)
Let (2, F,P) be a probability space and let X,Y € £1(Q2, F,P) be random
variables. Furthermore, let G C F be a sub-o-algebra. Then, we have that

(i) (Monotonicity) E(X|G) > E(Y|G), if X > Y almost surely.

(ii) (Dominated Convergence) lim E(X,|G) =E(X|G) almost surely
n—oo

and in £LY(Q, F,P), if Y > 0 and (X,)nen is a sequence of random
variables with | X,,| <Y, n € N, and X,, — X almost surely, as n — 0.

Proof. see [K]|, Page 170. O

Theorem A.11. (Uniqueness theorem for measures)

Let F C P(2) be a o-algebra and let € be such, that it is closed under finite
intersection and that o(€) = F. If p,v : F — [0,00] are measures with
tle = v|e and ple o-finite, then p = v holds and p is o-finite.

Proof. see [S], Page 63, 64. O

Theorem A.12. (Carathéodory extension theorem)
Let R € P(Q2) be a ring and u be a o-finite pre-measure on R. Then, there
exists a unique measure j; on o(R) such that j|gr = p and p is o-finite.

Proof. see [K]|, Page 19. O

Definition A.13. ({-continuity)

Let p be a content on the ring R. p is called -continuous, if for every
sequence (A, )pen in R with u(A,) < oo and A, D A,41, for all n € N, and
Mhen An = 0, it holds that u(A,) — 0 as n — co.
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Lemma A.14.
Let p be a finite content on the ring R. Then, the following two statements
are equivalent

(i) p is o-additive (and therefore a pre-measure),
(i) p is -continuous.
Proof. see [S], Page 54. O

Theorem A.15.
Let (& )ier be an independent family of sets & C F which are closed under

finite intersection and let (7});c; be a partition of T. If F; := ¢ (Uielj &)

are the o-algebras generated by all & with ¢ € I;, then the family (F;);ec; is
independent.

Proof. see [B], Page 45 and 46. O

Definition A.16. (Holder-continuity)

Let (E,d), (E',d") be metric spaces and v € (0, 1]. A mapping ¢ : £ — E’ is
Holder-continuous of order v in a point r € E, if there exists an € > 0
and a C' < oo, such that for all s € E with d(s,r) < € it holds that

d'(p(r), (s)) < C-d(r,s)". (A1)

@ is called locally Holder-continuous of order ~, if for every ¢t € E an
e >0and a C' = C(t,€) > 0 exists, such that for all s,r € E with d(s,t) <
and d(r,t) < €, inequality (A.1) holds.

v is called Holder-continuous of order v, if there exists a C, such that
(A.1) holds for all s,r € E.

Theorem A.17.
Let {(, Fi, i) }1<i<n, 7 € N, be a family of o-finite measure spaces. There

v >< A € Fa,., n}¢N<HAi) Zgﬂi(Ai)

holds. The measure p is o-finite. p is a probability measure, if all y; are
probability measures.

Proof. see [S], Page 173. O
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Theorem A.18. (Integration with respect to push-forward measure)

Let (24, F1) be a measurable space, ({2, F2, 1) be a measure space and T :
2y — €y be a measurable map. Furthermore, let f : 3 — [—00,00] be a
measurable function. Then

[ titwor ) = [ roTa

holds if either integral is defined.

Proof. See [D1], Page 121. O



Existence of the Brownian
Motion

The main concern of this chapter will be to prove the existence of the Brow-
nian motion on R. The way this is done here is more extensive than neces-
sary, but will eventually allow us to apply a similar result to a wider range of
stochastic processes. Namely, we will see that the construction we use only
relies on a certain convolution behavior a family of probability measures can
have.

Definition A.19.
A stochastic process X = (X;);er with values in Qy is

(i) real-valued, if Q2 = R,

(ii) a process with independent increments, if for every n € N and all
to,...,tn €T, with 0 = tg < ... < t,, it holds that

Xy, Xiy — Xty ooy Xy, — Xy, , 1s independent,

(iii) a process with stationary increments, if for all r,s,t € T it holds
that

IP)Xr+s+t_Xs+t = ]P)XT+S_X5'

If 0 € T', this simplifies to Px, , . —x, = Px,_x, forall r,s € T.

Remark. The independence as demanded in (ii) implies that the indepen-
dence holds for any choice of times 0 <ty < ... < t,.

In the case that tg > 0 it suffices to add ¢_; := 0 to the sequence of points of
time. From X;, = X; |, + (X3, — Xt ,) one sees that Xy, is measurable w.r.t
to the o-algebra C generated by X; , and X;, — X; |, i.e. 0(Xy,) CC.
ItXx, ,, Xy, —Xi,,.., Xy, — X, , are independent, it follows from Theo-
rem A.15, in the appendix, that C, o(X;, — X4,),...,0(Xt, — X4, _,) are inde-
pendent and consequently that X, X;, —Xy,,..., X;, —X;, , are independent
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Usually one uses the motion of a pollen in resting water to give an idea
how to abstract a Brownian motion from a real life application. A convenient
description is given in [D1] or [M-P].

Definition A.20. (Standard Brownian motion)
A real-valued stochastic process B = (B;)ic[o,0) is @ Brownian motion, if

(i) Bo = 0 almost surely,

)
(ii) B has stationary and independent increments,
(iii) By is normally distributed with mean 0 and variance t, i.e. By ~ Ny
iv)

(iv) the paths ¢t — B, of B are P-almost surely continuous, for all ¢t € T'.

Remark. When we refer to Brownian motion throughout this work, we always
refer to the Standard Brownian motion.

From here on, as already mentioned, we will study the existence of the
Brownian motion in an exhaustive way. This will further illustrate the power
of transition kernels, when working with stochastic processes.

Definition A.21. Concatenation of kernels
Let (£, F;), 1 = 0,1,2, be measurable spaces and let x; be stochastic kernels
from (€21, Fi_1) to (%, F;), i = 1,2. The Concatenation of x; and ks is
defined by

K1+ Ke Qo X Fo — [0,00)

(w07142) '—>/H1(wo,dw1)/€2(W1,A2)-
951

Remark. The concatenation of kernels is just a special case of the product
of kernels. With the first remark on the product of stochastic kernels this
can be written as (k1 - k2)(wo, Az) = (k1 ® K2)(wo, Ty H(Ag)), for all Ay € F,
where w5 denotes the projection to €2s.

Definition A.22. (Consistent family of kernels)

Let E be a Polish space, ' C R a non-empty index set and let (ks : s,t €
T,s < t) be a family of stochastic kernels from E to E. The family is called
consistent, if for all r,s,t € T, with r < s < t, it holds that

Rrs* Rst = Rpt.
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Definition A.23.
Let E be a Polish space and let T C [0, 00) be a semigroup. A family (k¢)ier
of stochastic kernels from E to E is a semigroup of stochastic kernels or
Markovian semigroup, if the Chapman-Kolmogorov equation holds,
ie.,

Vs, t €T : Kg- Ky = Kgiy.

Lemma A.24.
If (Ki)ier is a Markovian semigroup, then the family of kernels defined by
Kst = K¢—s, t > 8, 1 consistent.

Proof. Let r,s,t € T with r < s < t. Since (k¢)ier is a Markovian semigroup
the Chapman-Kolmogorov equation holds and we have that

Rps* Rst = Rr—s * Rs—t = Ryp—s4s—t = Rr—t = Krpt.

]

The following result gives the existence of a stochastic kernel on the prod-
uct space of, up to uncountably many, polish spaces under the assumption
that the kernels defined on each of these polish spaces form a consistent family
of stochastic kernels, as defined above. This theorem utilizes the Kolmogorov
existence theorem and is the core result of this chapter.

Theorem A.25. (Kernel given by a consistent family of kernels)

Let T C [0,00) and let (kst : s,t € T,s < t) be a consistent family of
stochastic kernels on a Polish space E. Then, there exists a kernel s from
(E,B(E)) to (ET,B(E)®T), such that for each x € E and J := {jo, ..., jn} €
E(T), with 0 = jo < ... < Jy, it holds that

n—1
K(z, - )Oﬂ-jl = <®ﬁjk,jk+1> (z, ).
k=0

Proof. In order to prove this we have to show that k exists and that it is a
stochastic kernel.

The Kolmogorov existence theorem guarantees the existence of the kernel x,
if the family P; := ( Z;é Kijpiers) (@, - ), J € E(T) with 0 € J, is projective.
Let0e LCJCT,L,Je€&(T). We have to show that Py o (nf)~! = Py.
W.lo.g. we can assume that L = J \ {j,} with ¢ =1, ..., n, since the general
case follows inductively.

We have to distinguish two case. First, let £ = n, let A;,,...., A, , € B(E)
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and define A := X .., A;. Then, we have that

(Pyo(nf) ") (A) =Ps(A X E) = (PL ® Kj,_,,)(A x E)

_ /PL(d(wo, o)) (s E) = /IP’L(d(wO, wn 1)) = Po(A).

For the second case, let £ € {1,...,n—1}, let A; € B(E) for all j € L and de-
fine the sets A := X, Aj, A1 1= ‘LA and Ay = Xir—t1 Ajy,- To fur-
ther simplify the notation we introduce fi(w;) = (Qj_; Fjpjrrr) Wir Ajiry X
.xAj;)foralli=0,...,n—1

Since we are dealing with a consistent family of kernels and Fubini’s theorem
holds true for finite transition kernels (see [K], Page 270) we get that

ff—l(wé—l) = ( ® ’{jk,jkﬂ)("‘}f—l? E X AZ)

k=(—1

n
= //@je_hje(wg_l,dwg) / ’ije,je+1 (wg,da)gﬂ)( ® "{jk7jk+1)(wf+17Aje+2 X ... X Ajn)

P A k=f+1
Fubing
=" / / Kjo1go (o1, dwe) kg, g,y (We, dweyr) frea (wWegn)
Aj, E
C ist
e / Koo (We—1, dwey1) forr (Wegr).
Ajpgq

From this, it follows that

(Pyo(m7) ") (A) =Ps(Ar X E x Ay) = (é Kijinss) (@, A1 X E X As)

k=0
-2 n
- /( ijvijrl)(x’d(wlu ---7W671>)( /ijk,jkﬂ)(dwl,l,E X AQ)
4, k=0 k=(—1
1
=2
~ [(@ st o) [ s s o) s ()
k=0 ,
A1 Ajpgq

£—2

= (® Rjiner © Fje_1gors @ ® K/jkyjk-&-l)(x? A) = PL(A)v

k=0 k=041
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and, therefore, that P; := (Q)_g ki jess) (@, - ), J € E(T) with 0 € J, is

projective.

To finish the proof we need to show that x is a stochastic kernel, i.e.; that
r — k(z,A) is B(E)-B(E)®T-measurable. From Corollary 2.15, we know
that it suffices to show this for rectangular cylinders with finite Basis Z%,
since Lemma 2.12 gives that this is a generator of B(E)®T with the finite
intersection property.

Let 0 = tg < ... < tn, By, ..., B, € B(E) and A := (i_, 7. ' (By).

From Lemma 2.16, the lemma about products of kernels, we know that the
finite product of stochastic kernels is stochastic and, therefore, that

£ Po(A) = @ ), X )

is measurable for every rectangular cylinder with finite basis. m

To be able to use this central theorem, we have to reformulate it for
Markovian semigroups. The reformulation will tell us how a probability
measure on a product space of uncountably many polish spaces, depending
on a "starting distribution”, has to look.

Corollary A.26. (Measures by Markovian semigroups)

Let (k¢)ier be a Markovian semigroup on a Polish space E. Then, there exists
a unique stochastic kernel x from (E,B(FE)) to (E*, B(E)®T) such that for
all J := {to, ...,tn}, O=th<..<t,eT,

n—1
Ve € EVJ: k(z,-)om,' = <® %tk+1—tk> ().
k=0

For every probability measure p on F there exists a unique probability mea-
sure P* on (ET, B(E)®T) such that

n—1

VJ: Pto wjl =u® ® Ktpi1—tx
k=0

Proof. Since (k¢)ier is a Markovian semigroup, we have from Lemma A.24
that ks, = K,_s, ¥ > s, is a consistent family of kernels. The unique
existence of the kernel x follows from Theorem A.25. From the first remark
on products of stochastic kernels it follows that for any probability measure
i on E the product p ® ®Z;é Kit,,1—t, 1S a probability measure. O]
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Definition A.27.
A Markovian semigroup (r)ier on (R, B(R)?) is called translation invari-
ant if, for every ¢t € T, it holds that

Vo, z € RY A€ BR): ky(x, A) = k(x4 2, A+ 2).

Lemma A.28.
Let (P:)icr, be a family of probability measures on R¢ such that for all
s,t € Ry it holds that P, * Py = Pyyy. Then, k;(z, A) := Py (A — z) defines a

translation invariant Markovian semigroup (r;)ier, on (R B(R)?).

Proof. By definition ki(z+2z, A+z) = P(A+z—2—2) = P(A—2) = Ky(z, A)
holds for all z,z € RY, A € B(R)?, t € R and, therefore, that (k;)er, is
translation invariant.

Obviously, k¢(z, A) = P(A — ) is a probability measure for each z € R%.
Since, for each A € B(R)?, the map (x,y) — L1a(x + y) is the composition
of the continuous map (z,y) + z + y with the B(R)%measurable indicator
function 14, it is B(R)? ® B(R)%measurable. The B(R)%measurability of

r o / 14z + y)Pi(dy) = / Lo (y)Pu(dy) = Po(A — 2)

then follows by Fubini’s theorem. Therefore, (k;)icr, are stochastic kernels.
Furthermore, (£¢)er, is a Markovian semigroup, which follows from the fact
that the Chapman-Kolmogorov equation holds:

Rst(T, A) = Psii(A —2) = (Ps x P (A —2) = /]P’S(dy)IP’t(A —y—1)

B /’fs(rca d(x +y))ri(y + 2, A) = (kg - k) (, A).
0

As one sees now, it suffices to have a family of probability measures
(Py)ier, with Py P, = Py, for all s,t € Ry, for all the result we have so
far to be true. Furthermore, with the help of this property we can derive the
second crucial theorem of this chapter.

Theorem A.29.

Let (2, F,P* (X;)i>0) be the process coming from a translation invariant
Markovian semigroup (P;);>o on R? and a probability measure y, where X;
is the t-th coordinate function.

Then, the process (X;);>o has stationary and independent increments. Fur-
thermore, it holds for s,¢ € R, with s < ¢, that

H —
Py . =P,
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Proof. First, define Y := (X, X;) and the map q(x1, z3) := x5 — x1. Clearly,
q is continuous and thereby Borel-measurable. With these definitions P _

is the distribution of go Y w.r.t. P*, i.e.,
Py,_x.(B) =P*{X, — X, € B} =P*{qoY € B} =P*{Y € ¢'(B)}

S

and, therefore, we have

P4, . (B) = / / / L) (21, ) hys (21, dwa) i (, dy ) p(d)
:///]1I1+B(x2)/<;ts($1,d9€2)/€s(53>d331)/i(d$)
://Fcts(xl,l‘l—i-B)Fds(f,dxl)N(dx)

fransint p, (B) / / R (2, dy) p(de)
=Pi_(B).

By this, we have that IP’%HS* x. = Pirs)—s = Pro = P, _x, and consequently
that (X;):>o is stationary.

In the following let J = tg, ..., t, with 0 =ty < ... < t,,.

To see the independence of the increments we make the observation that
ke(x, A) = P(A—2x) can be written as [ 1a(y)ri(z, dy) = [ La(z+y)Pi(dy).
For a Borel-measurable function f : (R%)" — [0, co] successive application of
this yields

/f(xl, ey TPy (d(xy, ooy )

:/.../f(a:o—l—:cl,...,xo—l—...—|—asn)IP’tn_tn_l(dxn)...Ptl(dxl)u(dxo).

From this and the transformation formula (Appendix, Theorem A.18), to-
gether with defining Yy := X, Y7 = Xy, — Xy,...,Yn = Xy, — X3, _,, and
X;_, =0, it follows that
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- / f[nAj o (Xy, — Xy, ,)dP*
/nAO ) H]IA — 2 )P (d(xo, ..., 70))
= / / T, (24 —|—xo)H]lA].(xj)IP’tn_tnfl(dmn)...IPtO(d:pg)u(dx_l)
j=1
— (ﬁ / 1Aj(xj)mj_tj_1> / Ty (21 4 20)pu(d )
j=1
= 11(Ao) ﬁptj_tjl(A])
j=1

Since Py = §p and Yy = Xy, = X, it holds that

Il
Bt

Py, (4o) Ko(x, Ao)p(dx)

Po(Ao — x)p(dx)

do(Ao — x)p(dx)
Ap)

and, together with the stationarity, that

1(Ag) HIP’t iy (A7) = Py (A) H]P’t i (A)

J=1
n

stat- i (Ap) H th x., (A;)

J=1

]

Definition A.30. (Modification/Version)
Let X and Y be stochastic processes from (Q4, F1,P) to (Q, F2) with the
index set T'. Then X and Y are called modifications or versions of each
other, if

VieT: X; =Y, P-almost surely
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Theorem A.31. (Kolmogorov-Chentsov)
Let X = (Xi)icp,00) be a real-valued process. For each ¢t > 0 let there be
numbers «, 8, C > 0 with

Vs,t €[0,T]: E(|X; — X,|*) < CJt — s|"*7.

Then, there exists a modification X = ()A(Jt)te[o,oo) of X, which has locally

Hélder-continuous paths of every order v € (0, g)

Proof. see [K]|, Page 432-434. O

Theorem A.32.

There exists a probability space (€2, F,P) and a Brownian motion B on
(Q, F,P). The paths of B are almost surely locally Hélder-vy-continous with
v < i

Proof. Let T = [0,0), Q; = Rand B, = B(R) for allt € T. Then, = R[>
and B = B(R)®[>) holds. Define B; := m; as the t-th coordinate function
and B := (By)ier-

For every t € T define P, := Np,; with Nyo = do.

From No; * Nos = Noys it follows that P, x Py = P,y and, therefore, by
Lemma A.28, that k(z, A) := P;(A—=x), t € T defines a translation invariant
Markovian semigroup.

Hence, Corollary A.26 together with setting u = &y gives the unique existence
of a probability measure P% on (€2, B) for which

n—1

30 -1 _
P* o Ty = do ® ® Rty 1=t
k=0

holds. For every A € B(R) and each t € T' it follows that
P (4) = P (B, € A) = / b, A)do(dr) = / Noo(A—2)60(d) = Noy(A),

hence, that By ~ &y, which implies By = 0 P%-almost surely, and B; ~ Not,
for ¢t > 0. Furthermore, from Theorem A.29, we see that the process (By)er
on (Q, B,P%) has stationary and independent increments and additionally
that P%)t_Bs =P,y = Nos—s holds, for ¢t > s. This can be written as

P-P)(SBOt—BS =Myp—s =Vt—sNo1=vVt—sPi=t—s IP’(SBUI.

For n € N define C,, := E(B") = @n)! 0, which are the 2n-th moments of

2nn!

the standard normal distribution Ny;. Then, for every n € N, it holds that

E ((By — B,)*") =E((Vt —s B))*") = Cy|t — s|".
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Let n > 2 and v € (0, ”2—711) From Theorem A.31 we get the existence of a
version of B with paths that are locally Holder-continuous of order «. Since
all continuous versions of a process are equivalent, B is Holder-continuous of
order v for every v € (0, "2—;1) and each n > 2, hence for every v € (0, %) O
Remark. The d-dimensional Brownian motion is constructed as d-tuple of
one dimensional, independent Brownian motions on the probability space
(Qtdt) Follendh Q" P), where @, P denotes the unique product mea-
sure for a finite family of o-finite measures (see Theorem A.17).

Remark. Parts of this construction, namely, everything except the continuity
of the paths, holds for any family of probability measures (IP;);c7 with the
property P, x P, = P, , for all s,¢ € T. The Normal, Gamma, Cauchy, Bino-
mial, negative Binomial and Poisson distribution have this property (see [K],
Page 291), and therefore that these distributions omit a similar process. In
particular, the existence of the Poisson process is clear from this construction.



Fourier Transform and
Characteristic Function

Definition A.33.
Let u be a probability measure on R™. The characteristic function or
Fourier transform f :R"™ — C of y is defined by

7€) = [ (o)

Rn

Theorem A.34.
If 1 and v are measures on R" with the same Fourier transform or charac-
teristic function f: R"™ — C, then u = v.

Proof. see [D1], Page 303. O

Lemma A.35. (Bochner)
A continuous function f : R"™ — C is the characteristic function of a Borel
probability measure P on R”, if and only if f is positive semidefinite and

£0) = 1.
Proof. see [Ka|, Page 377. O
Lemma A.36. (Lévy inversion formula)

Let (€2, F, ) be a probability space, X : (Q,F,u) — (R,B(R)) a random

variable with distribution P and Fourier transform ¢p. For all a,b € R, with
—00 < a < b < 00, it holds that

y —iat __ ,—ibt P(X = P(X =
im [ it = Pla < X < b) + DX = FPX=0)
c—00 2mit 2
Proof. see [A] O
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Theorem A.37. (Tonelli’s theorem)
Let (4, F1, p1) and (Qq, Fa, p2) be o-finite and let f: Q; x Qs — [0, 00] be
a Fi ® Fy-measurable function or f € L1(Qq x Qy, Fi ® Fo, i1 @ pz). Then,

/fdm@uz //fwydul )dpa(y //f:vyduz )dp ()

holds and [ f(z,y)dp(z) is defined for ps-almost all y and [ f(z,y)dusa(y)
for pyi-almost all x.

Proof. see [D1], Page 137. O]



Convex Geometry and Related
Theorems

Theorem A.38.
Let H be a Hilbert space with inner product (-,-) and W C H be a closed
subspace. Then,

VeeHAzeWNyeWr:z=a+y,
where W+ :={w € H : (w,v) =0 Vv € W}.

Definition A.39. (Orthogonal projection)
Let H be a Hilbert space with inner product (-,-) and W C H be a closed
subspace. The orthogonal projection Py onto W is defined as the map

Py -H—H
zZ =,

where z is as in Theorem A.38.

Remark. Let w € RM and W := span{u}. We define rank-1 orthogonal
projections as u ® u := Py,. We have that

Vo e RM : (u®@u)(z) = (u, 2)u.

Lemma A.40.

Let W be an n-dimensional subspace of RM and let g be the standard Gaus-
sian random vector in RM. Then, Py g is the standard Gaussian random
vector in W.

Proof. Let {fi,..., fn} be an orthonormal basis in W. Then, we can extend
this basis with Gram-Schmidt to an orthonormal basis {fi, ..., far} in RM.
Let now ¢;, i = 1, ..., M, be standard Gaussian random variables. Then, the
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standard Gaussian vector in RM can be written as g = Zf‘il gifi.
For the orthogonal projection Py we have

M n
Pywg = Pw (Z 9z‘f¢> => gl
i=1 i=1

which is the standard Gaussian vector in W. O

Theorem A.41. (Dual Sudakov minoration)

Let (g;)i=1,..n be the standard Gaussian vector on RM . Let T be a symmetric
convex body in RM with elements ¢ = (¢;)i=1._x € T and X = (X;)er be a
Gaussian process on RM defined by X; = Zf\il gits.

Let T° := {z € RM : vy € T : (z,y) < 1} be the polar of T and denote
by N(A, B) the number of translates of the set B by elements of the set A
necessary to cover A. Then

sup 5\/log N(BY eT°) < CEsup | X,|.

e>0 teT
Proof. see [L-T]|, page 82. O
Remark.

(i) To apply this theorem to the e-Entropy of B in RM w.r.t. some norm
| - || and corresponding unit ball BM note that

N(By',eBY) = N(By'. || - [I. ).
(ii) For a convex body K C RM ie., K is a convex and compact set with
nonempty interior, and a subspace £ C R™ the following holds
(KNE) = Pg(K°)
(iii) In Banach space X = (RM ]| -||) with unit ball Bx we have
By« ={y e RM : Vo € Bx : (x,y) <1} = (Bx)°.

So the unit ball of the dual space X* is the polar body of Bx, (Bx)°.
This can be seen by the Riesz representation theorem.

Theorem A.42. (Subgaussian tail estimate)

Let (o)ien, o € R for all i € N, and let (g;);en be a sequence of independent
Rademacher random variables, i.e., taking values in {—1, 1} with probability
1/2 each. Then for every ¢ > 0 we have

1 ¢
1€eN i

i€EN
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Proof. see [L-T|, page 92. O

Lemma A.43.

Let Z;, 1 = 1,..., M, be independent folded standard normal distributed
random variables on RT, ie., Z; = |X;| with X; ~ N(0,1) for i = 1,..., M
and independent. Then, there exists a constant C' > 0 such that

IE max Z; < Cy/log M

=1,..,

Proof. Let Z := max;_;

.....

M
Jensen
exp(tEZ) < TEexp(tZ) = ]E max exp(tZ;) <ZEexp tZ;).

-----
=1

The moment generating function of a folded standard normal distributed
random variable Z; is

1 1 —t 2
Eexp(tZ;) = 26872 [ = — = ) ) <26t/
exp(tZ;) = 2e 5 2erf 75)) = e,

where er f(t) f fo dz is the error-function.
Using this, we get ,
exp(tREZ) < 2Me /2,

which we can rearrange as

log2 logM t
g+g

t iy
With the choice of t = y/2log M we see that

log2 \/logM
EZ < v2+v/log M = v/2+/log M + logQ
\/21 gM '

which we further estimate by the inequality log M > log 2, for all M > 2, as

< V2y/log M + \/log M = (v/2+1)/log M.

EZ <

]

Lemma A.44.
Let Z; ~N(0,1),7=1,..., M, independent. Let ay,...,ap; € R\ {0}. Then,
forall j=1,..., M,
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Proof.
We have a;Z; ~ N'(0,a?) and therefore Y7 a,Z; ~ N (0, M, a?).
On the other hand we know

M 1/2 M
(Z a?) L~ N <O,Za?>
i=1

i=1
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